mirror of
https://github.com/csunny/DB-GPT.git
synced 2026-01-13 19:55:44 +00:00
230 lines
8.1 KiB
Python
230 lines
8.1 KiB
Python
import threading
|
|
from datetime import datetime
|
|
|
|
from langchain.text_splitter import RecursiveCharacterTextSplitter, SpacyTextSplitter
|
|
|
|
from pilot.configs.config import Config
|
|
from pilot.configs.model_config import LLM_MODEL_CONFIG, KNOWLEDGE_UPLOAD_ROOT_PATH
|
|
from pilot.embedding_engine.embedding_engine import EmbeddingEngine
|
|
from pilot.logs import logger
|
|
from pilot.server.knowledge.chunk_db import (
|
|
DocumentChunkEntity,
|
|
DocumentChunkDao,
|
|
)
|
|
from pilot.server.knowledge.document_db import (
|
|
KnowledgeDocumentDao,
|
|
KnowledgeDocumentEntity,
|
|
)
|
|
from pilot.server.knowledge.space_db import (
|
|
KnowledgeSpaceDao,
|
|
KnowledgeSpaceEntity,
|
|
)
|
|
from pilot.server.knowledge.request.request import (
|
|
KnowledgeSpaceRequest,
|
|
KnowledgeDocumentRequest,
|
|
DocumentQueryRequest,
|
|
ChunkQueryRequest,
|
|
)
|
|
from enum import Enum
|
|
|
|
from pilot.server.knowledge.request.response import (
|
|
ChunkQueryResponse,
|
|
DocumentQueryResponse,
|
|
SpaceQueryResponse,
|
|
)
|
|
|
|
knowledge_space_dao = KnowledgeSpaceDao()
|
|
knowledge_document_dao = KnowledgeDocumentDao()
|
|
document_chunk_dao = DocumentChunkDao()
|
|
|
|
CFG = Config()
|
|
|
|
|
|
class SyncStatus(Enum):
|
|
TODO = "TODO"
|
|
FAILED = "FAILED"
|
|
RUNNING = "RUNNING"
|
|
FINISHED = "FINISHED"
|
|
|
|
|
|
# @singleton
|
|
class KnowledgeService:
|
|
def __init__(self):
|
|
pass
|
|
|
|
"""create knowledge space"""
|
|
|
|
def create_knowledge_space(self, request: KnowledgeSpaceRequest):
|
|
query = KnowledgeSpaceEntity(
|
|
name=request.name,
|
|
)
|
|
spaces = knowledge_space_dao.get_knowledge_space(query)
|
|
if len(spaces) > 0:
|
|
raise Exception(f"space name:{request.name} have already named")
|
|
knowledge_space_dao.create_knowledge_space(request)
|
|
return True
|
|
|
|
"""create knowledge document"""
|
|
|
|
def create_knowledge_document(self, space, request: KnowledgeDocumentRequest):
|
|
query = KnowledgeDocumentEntity(doc_name=request.doc_name, space=space)
|
|
documents = knowledge_document_dao.get_knowledge_documents(query)
|
|
if len(documents) > 0:
|
|
raise Exception(f"document name:{request.doc_name} have already named")
|
|
document = KnowledgeDocumentEntity(
|
|
doc_name=request.doc_name,
|
|
doc_type=request.doc_type,
|
|
space=space,
|
|
chunk_size=0,
|
|
status=SyncStatus.TODO.name,
|
|
last_sync=datetime.now(),
|
|
content=request.content,
|
|
result="",
|
|
)
|
|
return knowledge_document_dao.create_knowledge_document(document)
|
|
|
|
"""get knowledge space"""
|
|
|
|
def get_knowledge_space(self, request: KnowledgeSpaceRequest):
|
|
query = KnowledgeSpaceEntity(
|
|
name=request.name, vector_type=request.vector_type, owner=request.owner
|
|
)
|
|
return knowledge_space_dao.get_knowledge_space(query)
|
|
|
|
"""get knowledge get_knowledge_documents"""
|
|
|
|
def get_knowledge_documents(self, space, request: DocumentQueryRequest):
|
|
query = KnowledgeDocumentEntity(
|
|
doc_name=request.doc_name,
|
|
doc_type=request.doc_type,
|
|
space=space,
|
|
status=request.status,
|
|
)
|
|
res = DocumentQueryResponse()
|
|
res.data = knowledge_document_dao.get_knowledge_documents(
|
|
query, page=request.page, page_size=request.page_size
|
|
)
|
|
res.total = knowledge_document_dao.get_knowledge_documents_count(query)
|
|
res.page = request.page
|
|
return res
|
|
|
|
"""sync knowledge document chunk into vector store"""
|
|
|
|
def sync_knowledge_document(self, space_name, doc_ids):
|
|
for doc_id in doc_ids:
|
|
query = KnowledgeDocumentEntity(
|
|
id=doc_id,
|
|
space=space_name,
|
|
)
|
|
doc = knowledge_document_dao.get_knowledge_documents(query)[0]
|
|
if (
|
|
doc.status == SyncStatus.RUNNING.name
|
|
or doc.status == SyncStatus.FINISHED.name
|
|
):
|
|
raise Exception(
|
|
f" doc:{doc.doc_name} status is {doc.status}, can not sync"
|
|
)
|
|
|
|
if CFG.LANGUAGE == "en":
|
|
text_splitter = RecursiveCharacterTextSplitter(
|
|
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
|
|
chunk_overlap=20,
|
|
length_function=len,
|
|
)
|
|
else:
|
|
try:
|
|
text_splitter = SpacyTextSplitter(
|
|
pipeline="zh_core_web_sm",
|
|
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
|
|
chunk_overlap=100,
|
|
)
|
|
except Exception:
|
|
text_splitter = RecursiveCharacterTextSplitter(
|
|
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE, chunk_overlap=50
|
|
)
|
|
client = EmbeddingEngine(
|
|
knowledge_source=doc.content,
|
|
knowledge_type=doc.doc_type.upper(),
|
|
model_name=LLM_MODEL_CONFIG[CFG.EMBEDDING_MODEL],
|
|
vector_store_config={
|
|
"vector_store_name": space_name,
|
|
"vector_store_type": CFG.VECTOR_STORE_TYPE,
|
|
"chroma_persist_path": KNOWLEDGE_UPLOAD_ROOT_PATH,
|
|
},
|
|
text_splitter=text_splitter,
|
|
)
|
|
chunk_docs = client.read()
|
|
# update document status
|
|
doc.status = SyncStatus.RUNNING.name
|
|
doc.chunk_size = len(chunk_docs)
|
|
doc.gmt_modified = datetime.now()
|
|
knowledge_document_dao.update_knowledge_document(doc)
|
|
# async doc embeddings
|
|
thread = threading.Thread(
|
|
target=self.async_doc_embedding, args=(client, chunk_docs, doc)
|
|
)
|
|
thread.start()
|
|
logger.info(f"begin save document chunks, doc:{doc.doc_name}")
|
|
# save chunk details
|
|
chunk_entities = [
|
|
DocumentChunkEntity(
|
|
doc_name=doc.doc_name,
|
|
doc_type=doc.doc_type,
|
|
document_id=doc.id,
|
|
content=chunk_doc.page_content,
|
|
meta_info=str(chunk_doc.metadata),
|
|
gmt_created=datetime.now(),
|
|
gmt_modified=datetime.now(),
|
|
)
|
|
for chunk_doc in chunk_docs
|
|
]
|
|
document_chunk_dao.create_documents_chunks(chunk_entities)
|
|
|
|
return True
|
|
|
|
"""update knowledge space"""
|
|
|
|
def update_knowledge_space(
|
|
self, space_id: int, space_request: KnowledgeSpaceRequest
|
|
):
|
|
knowledge_space_dao.update_knowledge_space(space_id, space_request)
|
|
|
|
"""delete knowledge space"""
|
|
|
|
def delete_knowledge_space(self, space_id: int):
|
|
return knowledge_space_dao.delete_knowledge_space(space_id)
|
|
|
|
"""get document chunks"""
|
|
|
|
def get_document_chunks(self, request: ChunkQueryRequest):
|
|
query = DocumentChunkEntity(
|
|
id=request.id,
|
|
document_id=request.document_id,
|
|
doc_name=request.doc_name,
|
|
doc_type=request.doc_type,
|
|
)
|
|
res = ChunkQueryResponse()
|
|
res.data = document_chunk_dao.get_document_chunks(
|
|
query, page=request.page, page_size=request.page_size
|
|
)
|
|
res.total = document_chunk_dao.get_document_chunks_count(query)
|
|
res.page = request.page
|
|
return res
|
|
|
|
def async_doc_embedding(self, client, chunk_docs, doc):
|
|
logger.info(
|
|
f"async_doc_embedding, doc:{doc.doc_name}, chunk_size:{len(chunk_docs)}, begin embedding to vector store-{CFG.VECTOR_STORE_TYPE}"
|
|
)
|
|
try:
|
|
vector_ids = client.knowledge_embedding_batch(chunk_docs)
|
|
doc.status = SyncStatus.FINISHED.name
|
|
doc.result = "document embedding success"
|
|
if vector_ids is not None:
|
|
doc.vector_ids = ",".join(vector_ids)
|
|
logger.info(f"async document embedding, success:{doc.doc_name}")
|
|
except Exception as e:
|
|
doc.status = SyncStatus.FAILED.name
|
|
doc.result = "document embedding failed" + str(e)
|
|
logger.error(f"document embedding, failed:{doc.doc_name}, {str(e)}")
|
|
return knowledge_document_dao.update_knowledge_document(doc)
|