hv: separate the PCI CONFIG_ADDR and CONFIG_DATA I/O port handlers

Register separate I/O emulation handlers for I/O port CF8 and CFC. This
makes the code simpler, and offers some flexibilities to be able to handle
CF8 and CFC ports differently.

Tracked-On: #1815
Signed-off-by: Zide Chen <zide.chen@intel.com>
Reviewed-by: Li, Fei1 <fei1.li@intel.com>
Acked-by: Anthony Xu <anthony.xu@intel.com>
This commit is contained in:
Zide Chen 2018-11-09 20:46:41 -08:00 committed by lijinxia
parent 8b4f395683
commit fe9a340ea9
2 changed files with 60 additions and 63 deletions

View File

@ -30,17 +30,6 @@
#include <hypervisor.h>
#include "pci_priv.h"
static bool is_cfg_addr(uint16_t addr)
{
return (addr >= PCI_CONFIG_ADDR) && (addr < (PCI_CONFIG_ADDR + 4U));
}
static bool is_cfg_data(uint16_t addr)
{
return (addr >= PCI_CONFIG_DATA) && (addr < (PCI_CONFIG_DATA + 4U));
}
static void pci_cfg_clear_cache(struct pci_addr_info *pi)
{
pi->cached_bdf.value = 0xFFFFU;
@ -48,79 +37,81 @@ static void pci_cfg_clear_cache(struct pci_addr_info *pi)
pi->cached_enable = false;
}
static uint32_t pci_cfg_io_read(struct acrn_vm *vm, uint16_t addr, size_t bytes)
static uint32_t pci_cfgaddr_io_read(struct acrn_vm *vm, uint16_t addr, size_t bytes)
{
uint32_t val = 0xFFFFFFFFU;
uint32_t val = ~0U;
struct vpci *vpci = &vm->vpci;
struct pci_addr_info *pi = &vpci->addr_info;
if (is_cfg_addr(addr)) {
/* TODO: handling the non 4 bytes access */
if (bytes == 4U) {
val = (uint32_t)pi->cached_bdf.value;
val <<= 8U;
val |= pi->cached_reg;
if (pi->cached_enable) {
val |= PCI_CFG_ENABLE;
}
}
} else {
if (is_cfg_data(addr)) {
if (pi->cached_enable) {
uint16_t offset = addr - PCI_CONFIG_DATA;
if ((vpci->ops != NULL) && (vpci->ops->cfgread != NULL)) {
vpci->ops->cfgread(vpci, pi->cached_bdf,
pi->cached_reg + offset, bytes, &val);
}
pci_cfg_clear_cache(pi);
}
} else {
val = 0xFFFFFFFFU;
if ((addr == (uint16_t)PCI_CONFIG_ADDR) && (bytes == 4U)) {
val = (uint32_t)pi->cached_bdf.value;
val <<= 8U;
val |= pi->cached_reg;
if (pi->cached_enable) {
val |= PCI_CFG_ENABLE;
}
}
return val;
}
static void pci_cfg_io_write(struct acrn_vm *vm, uint16_t addr, size_t bytes,
uint32_t val)
static void pci_cfgaddr_io_write(struct acrn_vm *vm, uint16_t addr, size_t bytes, uint32_t val)
{
struct vpci *vpci = &vm->vpci;
struct pci_addr_info *pi = &vpci->addr_info;
if (is_cfg_addr(addr)) {
/* TODO: handling the non 4 bytes access */
if (bytes == 4U) {
pi->cached_bdf.value = (uint16_t)(val >> 8U);
pi->cached_reg = val & PCI_REGMAX;
pi->cached_enable = ((val & PCI_CFG_ENABLE) == PCI_CFG_ENABLE);
}
} else {
if (is_cfg_data(addr)) {
if (pi->cached_enable) {
uint16_t offset = addr - PCI_CONFIG_DATA;
if ((addr == (uint16_t)PCI_CONFIG_ADDR) && (bytes == 4U)) {
pi->cached_bdf.value = (uint16_t)(val >> 8U);
pi->cached_reg = val & PCI_REGMAX;
pi->cached_enable = ((val & PCI_CFG_ENABLE) == PCI_CFG_ENABLE);
}
}
if ((vpci->ops != NULL) && (vpci->ops->cfgwrite != NULL)) {
vpci->ops->cfgwrite(vpci, pi->cached_bdf,
pi->cached_reg + offset, bytes, val);
}
pci_cfg_clear_cache(pi);
}
} else {
pr_err("Not PCI cfg data/addr port access!");
static uint32_t pci_cfgdata_io_read(struct acrn_vm *vm, uint16_t addr, size_t bytes)
{
struct vpci *vpci = &vm->vpci;
struct pci_addr_info *pi = &vpci->addr_info;
uint16_t offset = addr - PCI_CONFIG_DATA;
uint32_t val = ~0U;
if (pi->cached_enable) {
if ((vpci->ops != NULL) && (vpci->ops->cfgread != NULL)) {
vpci->ops->cfgread(vpci, pi->cached_bdf, pi->cached_reg + offset, bytes, &val);
}
pci_cfg_clear_cache(pi);
}
return val;
}
static void pci_cfgdata_io_write(struct acrn_vm *vm, uint16_t addr, size_t bytes, uint32_t val)
{
struct vpci *vpci = &vm->vpci;
struct pci_addr_info *pi = &vpci->addr_info;
uint16_t offset = addr - PCI_CONFIG_DATA;
if (pi->cached_enable) {
if ((vpci->ops != NULL) && (vpci->ops->cfgwrite != NULL)) {
vpci->ops->cfgwrite(vpci, pi->cached_bdf, pi->cached_reg + offset, bytes, val);
}
pci_cfg_clear_cache(pi);
}
}
void vpci_init(struct acrn_vm *vm)
{
struct vpci *vpci = &vm->vpci;
struct vm_io_range pci_cfg_range = {
struct vm_io_range pci_cfgaddr_range = {
.flags = IO_ATTR_RW,
.base = PCI_CONFIG_ADDR,
.len = 8U
.len = 4U
};
struct vm_io_range pci_cfgdata_range = {
.flags = IO_ATTR_RW,
.base = PCI_CONFIG_DATA,
.len = 4U
};
vpci->vm = vm;
@ -132,7 +123,12 @@ void vpci_init(struct acrn_vm *vm)
#endif
if ((vpci->ops->init != NULL) && (vpci->ops->init(vm) == 0)) {
register_io_emulation_handler(vm, PCI_PIO_IDX, &pci_cfg_range, pci_cfg_io_read, pci_cfg_io_write);
register_io_emulation_handler(vm, PCI_CFGADDR_PIO_IDX, &pci_cfgaddr_range,
pci_cfgaddr_io_read, pci_cfgaddr_io_write);
register_io_emulation_handler(vm, PCI_CFGDATA_PIO_IDX, &pci_cfgdata_range,
pci_cfgdata_io_read, pci_cfgdata_io_write);
/* This is a tmp solution to avoid sos reboot failure, it need pass-thru IO port CF9 for Reset Control
* register.
*/

View File

@ -13,8 +13,9 @@
#define PIC_MASTER_PIO_IDX 0U
#define PIC_SLAVE_PIO_IDX (PIC_MASTER_PIO_IDX + 1U)
#define PIC_ELC_PIO_IDX (PIC_SLAVE_PIO_IDX + 1U)
#define PCI_PIO_IDX (PIC_ELC_PIO_IDX + 1U)
#define UART_PIO_IDX (PCI_PIO_IDX + 1U)
#define PCI_CFGADDR_PIO_IDX (PIC_ELC_PIO_IDX + 1U)
#define PCI_CFGDATA_PIO_IDX (PCI_CFGADDR_PIO_IDX + 1U)
#define UART_PIO_IDX (PCI_CFGDATA_PIO_IDX + 1U)
#define PM1A_EVT_PIO_IDX (UART_PIO_IDX + 1U)
#define PM1A_CNT_PIO_IDX (PM1A_EVT_PIO_IDX + 1U)
#define PM1B_EVT_PIO_IDX (PM1A_CNT_PIO_IDX + 1U)