If HV enable trigger #GP for uc-lock, and is about to emulate guest uc-lock
instructions, should trap guest #GP. Guest uc-lock instrucction trigger #GP,
cause vmexit for #GP, HV handle this vmexit and emulate uc-lock
instruction.
Tracked-On: #6299
Signed-off-by: Tao Yuhong <yuhong.tao@intel.com>
for core partition VM (like RTVM), PMC is always used for performance
profiling / tuning, so expose PMC capability and pass-through its MSRs
to the VM.
Tracked-On: #6307
Signed-off-by: Minggui Cao <minggui.cao@intel.com>
Reviewed-by: Jason Chen CJ <jason.cj.chen@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
if one array just used in local only, and its size not used extern,
use ARRAY_SIZE macro to calculate its size.
Tracked-On: #6307
Signed-off-by: Minggui Cao <minggui.cao@intel.com>
Reviewed-by: Junjie Mao <junjie.mao@intel.com>
In some scenarios (e.g., nested) where lapic-pt is enabled for a vcpu
running on a pcpu hosting console timer, the hv console will be
inaccessible.
This patch adds the console callback to every VM-exit event so that the
console can still be somewhat functional under such circumstance.
Since this is VM-exit driven, the VM-exit/second can be low in certain
cases (e.g., idle or running stress workload). In extreme cases where
the guest panics/hangs, there will be no VM-exits at all.
In most cases, the shell is laggy but functional (probably enough for
debugging purpose).
Tracked-On: #6312
Signed-off-by: Yifan Liu <yifan1.liu@intel.com>
For an atomic operation using bus locking, it would generate LOCK# bus
signal, if it has Non-WB memory operand. This is an UC lock. It will
ruin the RT behavior of the system.
If MSR_IA32_CORE_CAPABILITIES[bit4] is 1, then CPU can trigger #GP
for instructions which cause UC lock. This feature is controlled by
MSR_TEST_CTL[bit28].
This patch enables #GP for guest UC lock.
Tracked-On: #6299
Signed-off-by: Tao Yuhong <yuhong.tao@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
Because the emulation code is for both split-lock and uc-lock,
rename splitlock.c/splitlock.h to lock_instr_emul.c/lock_instr_emul.h
Tracked-On: #6299
Signed-off-by: Tao Yuhong <yuhong.tao@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
Because the emulation code is for both split-lock and uc-lock, Changed
these API names:
vcpu_kick_splitlock_emulation() -> vcpu_kick_lock_instr_emulation()
vcpu_complete_splitlock_emulation() -> vcpu_complete_lock_instr_emulation()
emulate_splitlock() -> emulate_lock_instr()
Tracked-On: #6299
Signed-off-by: Tao Yuhong <yuhong.tao@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
Split-lock emulation can be re-used for uc-lock. In emulate_splitlock(),
it only work if this vmexit is for #AC trap and guest do not handle
split-lock and HV enable #AC for splitlock.
Add another condition to let emulate_splitlock() also work for #GP trap
and guest do not handle uc-lock and HV enable #GP for uc-lock.
Tracked-On: #6299
Signed-off-by: Tao Yuhong <yuhong.tao@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
When ACRN uses decode_instruction to emulate split-lock/uc-lock
instruction, It is actually a try-decode to see if it is XCHG.
If the instruction is XCHG instruction, ACRN must emulate it
(inject #PF if it is triggered) with peer VCPUs paused, and advance
the guest IP. If the instruction is a LOCK prefixed instruction
with accessing the UC memory, ACRN Halted the peer VCPUs, and
advance the IP to skip the LOCK prefix, and then let the VCPU
Executes one instruction by enabling IRQ Windows vm-exit. For
other cases, ACRN injects the exception back to VCPU without
emulating it.
So change the API to decode_instruction(vcpu, bool full_decode),
when full_decode is true, the API does same thing as before. When
full_decode is false, the different is if decode_instruction() meet unknown
instruction, will keep return = -1 and do not inject #UD. We can use
this to distinguish that an #UD has been skipped, and need inject #AC/#GP back.
Tracked-On: #6299
Signed-off-by: Tao Yuhong <yuhong.tao@intel.com>
Guest may not use INVEPT instruction after enabling any of bits 2:0 from
0 to 1 of a present EPT entry, then the shadow EPT entry has no chance
to sync guest EPT entry. According to the SDM,
"""
Software may use the INVEPT instruction after modifying a present EPT
paging-structure entry (see Section 28.2.2) to change any of the
privilege bits 2:0 from 0 to 1.1 Failure to do so may cause an EPT
violation that would not otherwise occur. Because an EPT violation
invalidates any mappings that would be used by the access that caused
the EPT violation (see Section 28.3.3.1), an EPT violation will not
recur if the original access is performed again, even if the INVEPT
instruction is not executed.
"""
Sync the afterthought of privilege bits from guest EPT entry to shadow
EPT entry to cover above case.
Tracked-On: #5923
Signed-off-by: Shuo A Liu <shuo.a.liu@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
MSR_IA32_VMX_EPT_VPID_CAP is 64 bits. Using 32 bits MACROs with it may
cause the bit expression wrong.
Unify the MSR_IA32_VMX_EPT_VPID_CAP operation with 64 bits definition.
Tracked-On: #5923
Signed-off-by: Shuo A Liu <shuo.a.liu@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
When hypervisor boots, the multiboot modules have been loaded to host space
by bootloader already. The space range of pre-launched VM modules is also
exposed to SOS VM, so SOS VM kernel might pick this range to extract kernel
when KASLR enabled. This would corrupt pre-launched VM modules and result in
pre-launched VM boot fail.
This patch will try to fix this issue. The SOS VM will not be loaded to guest
space until all pre-launched VMs are loaded successfully.
Tracked-On: #5879
Signed-off-by: Victor Sun <victor.sun@intel.com>
Reviewed-by: Jason Chen CJ <jason.cj.chen@intel.com>
Previously the load GPA of LaaG boot params like zeropage/cmdline and
initgdt are all hard-coded, this would bring potential LaaG boot issues.
The patch will try to fix this issue by finding a 32KB load_params memory
block for LaaG to store these guest boot params.
For other guest with raw image, in general only vgdt need to be cared of so
the load_params will be put at 0x800 since it is a common place that most
guests won't touch for entering protected mode.
Tracked-On: #5626
Signed-off-by: Victor Sun <victor.sun@intel.com>
Reviewed-by: Jason Chen CJ <jason.cj.chen@intel.com>
The API would search ve820 table and return a valid GPA when the requested
size of memory is available in the specified memory range, or return
INVALID_GPA if the requested memory slot is not available;
Tracked-On: #5626
Signed-off-by: Victor Sun <victor.sun@intel.com>
Reviewed-by: Jason Chen CJ <jason.cj.chen@intel.com>
The memory range of [0xA0000, 0xFFFFF] is a known reserved area for BIOS,
actually Linux kernel would enforce this area to be reserved during its
boot stage. Set this area to usable would cause potential compatibility
issues.
The patch set the range to reserved type to make it consistent with the
real world.
BTW, There should be a EBDA(Entended BIOS DATA Area) with reserved type
exist right before 0xA0000 in real world for non-EFI boot. But given ACRN
has no legacy BIOS emulation, we simply skipped the EBDA in vE820.
Tracked-On: #5626
Signed-off-by: Victor Sun <victor.sun@intel.com>
Reviewed-by: Jason Chen CJ <jason.cj.chen@intel.com>
Given the structure in multiboot.h could be used for any boot protocol,
use a more generic name "boot.h" instead;
Tracked-On: #5661
Signed-off-by: Victor Sun <victor.sun@intel.com>
Reviewed-by: Jason Chen CJ <jason.cj.chen@intel.com>
vmptrld_vmexit_handler() has a same code snippet with
vmclear_vmexit_handler(). Wrap the same code snippet as a static
function clear_vmcs02().
There is only a small logic change that add
nested->current_vmcs12_ptr = INVALID_GPA
in vmptrld_vmexit_handler() for the old VMCS. That's reasonable.
Tracked-On: #5923
Signed-off-by: Shuo A Liu <shuo.a.liu@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
get_ept_entry() actually returns the EPTP of a VM. So rename it to
get_eptp() for readability.
Tracked-On: #5923
Signed-off-by: Shuo A Liu <shuo.a.liu@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
We need to deny accesses from SOS to the HV owned UART device, otherwise
SOS could have direct access to this physical device and mess up the HV
console.
If ACRN debug UART is configured as PIO based, For example,
CONFIG_SERIAL_PIO_BASE is generated from acrn-config tool, or the UART
config is overwritten by hypervisor parameter "uart=port@<port address>",
it could run into problem if ACRN doesn't emulate this UART PIO port
to SOS. For example:
- none of the ACRN emulated vUART devices has same PIO port with the
port of the debug UART device.
- ACRN emulates PCI vUART for SOS (configure "console_vuart" with
PCI_VUART in the scenario configuration)
This patch fixes the above issue by masking PIO accesses from SOS.
deny_hv_owned_devices() is moved after setup_io_bitmap() where
vm->arch_vm.io_bitmap is initialized.
Commit 50d852561 ("HV: deny HV owned PCI bar access from SOS") handles
the case that ACRN debug UART is configured as a PCI device. e.g.,
hypervisor parameter "uart=bdf@<BDF value>" is appended.
If the hypervisor debug UART is MMIO based, need to configured it as
a PCI type device, so that it can be hidden from SOS.
Tracked-On: #5923
Signed-off-by: Zide Chen <zide.chen@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
Malicious input 'index' may trigger buffer
overflow on array 'irte_alloc_bitmap[]'.
This patch validate that 'index' shall be
less than 'CONFIG_MAX_IR_ENTRIES' and also
remove unnecessary check on 'index' in
'ptirq_free_irte()' function with this fix.
Tracked-On: #6132
Signed-off-by: Yonghua Huang <yonghua.huang@intel.com>
vlapic_write handle 'offset' that is valid and ignore
all other invalid 'offset'. so ASSERT on this 'offset'
input is unnecessary.
This patch removes above ASSERT to avoid potential
hypervisor crash by guest malicious input when debug
build is used.
Tracked-On: #6131
Signed-off-by: Yonghua Huang <yonghua.huang@intel.com>
generate_shadow_ept_entry() didn't verify the correctness of the requested
guest EPT mapping. That might leak host memory access to L2 VM.
To simplify the implementation of the guest EPT audit, hide capabilities
'map 2-Mbyte page' and 'map 1-Gbyte page' from L1 VM. In addition,
minimize the attribute bits of EPT entry when create a shadow EPT entry.
Also, for invalid requested mapping address, reflect the EPT_VIOLATION to
L1 VM.
Here, we have some TODOs:
1) Enable large page support in generate_shadow_ept_entry()
2) Evaluate if need to emulate the invalid GPA access of L2 in HV directly.
3) Minimize EPT entry attributes.
Tracked-On: #5923
Signed-off-by: Shuo A Liu <shuo.a.liu@intel.com>
Reviewed-by: Jason Chen CJ <jason.cj.chen@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
L1 VM changes the guest EPT and do INVEPT to invalidate the previous
TLB cache of EPT entries. The shadow EPT replies on INVEPT instruction
to do the update.
The target shadow EPTs can be found according to the 'type' of INVEPT.
Here are two types and their target shadow EPT,
1) Single-context invalidation
Get the EPTP from the INVEPT descriptor. Then find the target
shadow EPT.
2) Global invalidation
All shadow EPTs of the L1 VM.
The INVEPT emulation handler invalidate all the EPT entries of the
target shadow EPTs.
Tracked-On: #5923
Signed-off-by: Sainath Grandhi <sainath.grandhi@intel.com>
Signed-off-by: Zide Chen <zide.chen@intel.com>
Signed-off-by: Shuo A Liu <shuo.a.liu@intel.com>
Reviewed-by: Jason Chen CJ <jason.cj.chen@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
When a shadow EPT is not used anymore, its resources need to be
released.
free_sept_table() is introduced to walk the whole shadow EPT table and
free the pagetable pages.
Please note, the PML4E page of shadow EPT is not freed by
free_sept_table() as it still be used to present a shadow EPT pointer.
Tracked-On: #5923
Signed-off-by: Shuo A Liu <shuo.a.liu@intel.com>
Reviewed-by: Jason Chen CJ <jason.cj.chen@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
With shadow EPT, the hypervisor walks through guest EPT table:
* If the entry is not present in guest EPT, ACRN injects EPT_VIOLATION
to L1 VM and resumes to L1 VM.
* If the entry is present in guest EPT, do the EPT_MISCONFIG check.
Inject EPT_MISCONFIG to L1 VM if the check failed.
* If the entry is present in guest EPT, do permission check.
Reflect EPT_VIOLATION to L1 VM if the check failed.
* If the entry is present in guest EPT but shadow EPT entry is not
present, create the shadow entry and resumes to L2 VM.
* If the entry is present in guest EPT but the GPA in the entry is
invalid, injects EPT_VIOLATION to L1 VM and resumes L1 VM.
Tracked-On: #5923
Signed-off-by: Sainath Grandhi <sainath.grandhi@intel.com>
Signed-off-by: Zide Chen <zide.chen@intel.com>
Signed-off-by: Shuo A Liu <shuo.a.liu@intel.com>
Reviewed-by: Jason Chen CJ <jason.cj.chen@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
* Hide 5 level EPT capability, let L1 guest stick to 4 level EPT.
* Access/Dirty bits are not support currently, hide corresponding EPT
capability bits.
* "Mode-based execute control for EPT" is also not support well
currently, hide its capability bit from MSR_IA32_VMX_PROCBASED_CTLS2.
Tracked-On: #5923
Signed-off-by: Sainath Grandhi <sainath.grandhi@intel.com>
Signed-off-by: Zide Chen <zide.chen@intel.com>
Signed-off-by: Shuo A Liu <shuo.a.liu@intel.com>
Reviewed-by: Jason Chen CJ <jason.cj.chen@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
'struct nept_desc' is used to associate guest EPTP with a shadow EPTP.
It's created in the first reference and be freed while no reference.
The life cycle seems like,
While guest VMCS VMX_EPT_POINTER_FULL is changed, the 'struct nept_desc'
of the new guest EPTP is referenced; the 'struct nept_desc' of the old
guest EPTP is dereferenced.
While guest VMCS be cleared(by VMCLEAR in L1 VM), the 'struct nept_desc'
of the old guest EPTP is dereferenced.
While a new guest VMCS be loaded(by VMPTRLD in L1 VM), the 'struct
nept_desc' of the new guest EPTP is referenced. The 'struct nept_desc'
of the old guest EPTP is dereferenced.
Tracked-On: #5923
Signed-off-by: Sainath Grandhi <sainath.grandhi@intel.com>
Signed-off-by: Zide Chen <zide.chen@intel.com>
Signed-off-by: Shuo A Liu <shuo.a.liu@intel.com>
Reviewed-by: Jason Chen CJ <jason.cj.chen@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
To shadow guest EPT, the hypervisor needs construct a shadow EPT for each
guest EPT. The key to associate a shadow EPT and a guest EPT is the EPTP
(EPT pointer). This patch provides following structure to do the association.
struct nept_desc {
/*
* A shadow EPTP.
* The format is same with 'EPT pointer' in VMCS.
* Its PML4 address field is a HVA of the hypervisor.
*/
uint64_t shadow_eptp;
/*
* An guest EPTP configured by L1 VM.
* The format is same with 'EPT pointer' in VMCS.
* Its PML4 address field is a GPA of the L1 VM.
*/
uint64_t guest_eptp;
uint32_t ref_count;
};
Due to lack of dynamic memory allocation of the hypervisor, a array
nept_bucket of type 'struct nept_desc' is introduced to store those
association information. A guest EPT might be shared between different
L2 vCPUs, so this patch provides several functions to handle the
reference of the structure.
Interface get_shadow_eptp() also is introduced. To find the shadow EPTP
of a specified guest EPTP.
Tracked-On: #5923
Signed-off-by: Sainath Grandhi <sainath.grandhi@intel.com>
Signed-off-by: Zide Chen <zide.chen@intel.com>
Signed-off-by: Shuo A Liu <shuo.a.liu@intel.com>
Reviewed-by: Jason Chen CJ <jason.cj.chen@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
Shadow EPT uses lots of pages to construct the shadow page table. To
utilize the memory more efficient, a page poll sept_page_pool is
introduced.
For simplicity, total platform RAM size is considered to calculate the
memory needed for shadow page tables. This is not an accurate upper
bound. This can satisfy typical use-cases where there is not a lot
of overcommitment and sharing of memory between L2 VMs.
Memory of the pool is marked as reserved from E820 table in early stage.
Tracked-On: #5923
Signed-off-by: Sainath Grandhi <sainath.grandhi@intel.com>
Signed-off-by: Zide Chen <zide.chen@intel.com>
Signed-off-by: Shuo A Liu <shuo.a.liu@intel.com>
Reviewed-by: Jason Chen CJ <jason.cj.chen@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
Nested VM exits happen when vCPU is in guest mode (VMCS02 is current).
Initially we reflect all nested VM exits to L1 hypervisor. To prepare
the environment to run L1 guest:
- restore some VMCS fields to the value as what L1 hypervisor programmed.
- VMCLEAR VMCS02, VMPTRLD VMCS01 and enable VMCS shadowing.
- load the non-shadowing host states from VMCS12 to VMCS01 guest states.
- VMRESUME to L1 guest with this modified VMCS01.
Tracked-On: #5923
Signed-off-by: Sainath Grandhi <sainath.grandhi@intel.com>
Signed-off-by: Zide Chen <zide.chen@intel.com>
Signed-off-by: Alexander Merritt <alex.merritt@intel.com>
Since L2 guest vCPU mode and VPID are managed by L1 hypervisor, so we
can skip these handling in run_vcpu().
And be careful that we can't cache L2 registers in struct acrn_vcpu.
Tracked-On: #5923
Signed-off-by: Zide Chen <zide.chen@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
invvpid and invept instructions cause VM exits unconditionally.
For initial support, we pass all the instruction operands as is
to the pCPU.
Tracked-On: #5923
Signed-off-by: Sainath Grandhi <sainath.grandhi@intel.com>
Signed-off-by: Zide Chen <zide.chen@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
Implement the VMLAUNCH and VMRESUME instructions, allowing a L1
hypervisor to run nested guests.
- merge VMCS control fields and VMCS guest fields to VMCS02
- clear shadow VMCS indicator on VMCS02 and load VMCS02 as current
- set VMCS12 launch state to "launched" in VMLAUNCH handler
Tracked-On: #5923
Signed-off-by: Sainath Grandhi <sainath.grandhi@intel.com>
Signed-off-by: Zide Chen <zide.chen@intel.com>
Signed-off-by: Alex Merritt <alex.merritt@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
In physical destination mode, the destination processor is specified by its
local APIC ID. When a CPU switch xAPIC Mode to x2APIC Mode or vice versa,
the local APIC ID is not changed. So a vcpu in x2APIC Mode could use physical
Destination Mode to send an IPI to another vcpu in xAPIC Mode by writing ICR.
This patch adds support for a vCPU A could write ICR to send IPI to another
vCPU B which is in different APIC mode.
Tracked-On: #5923
Signed-off-by: Li Fei1 <fei1.li@intel.com>
Using physical APIC IDs as vLAPIC IDs for pre-Launched and post-launched VMs
is not sufficient to replicate the host CPU and cache topologies in guest VMs,
we also need to passthrough host CPUID leaf.0BH to guest VMs, otherwise,
guest VMs may see weird CPU topology.
Note that in current code, ACRN has already passthroughed host cache CPUID
leaf 04H to guest VMs
Tracked-On: #6020
Reviewed-by: Wang, Yu1 <yu1.wang@intel.com>
Signed-off-by: dongshen <dongsheng.x.zhang@intel.com>
In current code, ACRN uses physical APIC IDs as vLAPIC IDs for SOS,
and vCPU ids (contiguous) as vLAPIC IDs for pre-Launched and post-Launched VMs.
Using vCPU ids as vLAPIC IDs for pre-Launched and post-Launched VMs
would result in wrong CPU and cache topologies showing in the guest VMs,
and could adversely affect performance if the guest VM chooses to detect
CPU and cache topologies and optimize its behavior accordingly.
Uses physical APIC IDs as vLAPIC IDs (and related CPU/cache topology enumeration
CPUIDs passthrough) will replicate the host CPU and cache topologies in pre-Launched
and post-Launched VMs.
Tracked-On: #6020
Reviewed-by: Jason Chen CJ <jason.cj.chen@intel.com>
Signed-off-by: dongshen <dongsheng.x.zhang@intel.com>
Remove the direct calls to exec_vmptrld() or exec_vmclear(), and replace
with the wrapper APIs load_va_vmcs() and clear_va_vmcs().
Tracked-On: #5923
Signed-off-by: Zide Chen <zide.chen@intel.com>
This patch implements the VMREAD and VMWRITE instructions.
When L1 guest is running with an active VMCS12, the “VMCS shadowing”
VM-execution control is always set to 1 in VMCS01. Thus the possible
behavior of VMREAD or VMWRITE from L1 could be:
- It causes a VM exit to L0 if the bit corresponds to the target VMCS
field in the VMREAD bitmap or VMWRITE bitmap is set to 1.
- It accesses the VMCS referenced by VMCS01 link pointer (VMCS02 in
our case) if the above mentioned bit is set to 0.
This patch handles the VMREAD and VMWRITE VM exits in this way:
- on VMWRITE, it writes the desired VMCS value to the respective field
in the cached VMCS12. For VMCS fields that need to be synced to VMCS02,
sets the corresponding dirty flag.
- on VMREAD, it reads the desired VMCS value from the cached VMCS12.
Tracked-On: #5923
Signed-off-by: Alex Merritt <alex.merritt@intel.com>
Signed-off-by: Sainath Grandhi <sainath.grandhi@intel.com>
Signed-off-by: Zide Chen <zide.chen@intel.com>
Acked-by: Eddie Dong <eddie.dong@Intel.com>
This patch is to emulate VMCLEAR instruction.
L1 hypervisor issues VMCLEAR on a VMCS12 whose state could be any of
these: active and current, active but not current, not yet VMPTRLDed.
To emulate the VMCLEAR instruction, ACRN sets the VMCS12 launch state to
"clear", and if L0 already cached this VMCS12, need to sync it back to
guest memory:
- sync shadow fields from shadow VMCS VMCS to cache VMCS12
- copy cache VMCS12 to L1 guest memory
Tracked-On: #5923
Signed-off-by: Sainath Grandhi <sainath.grandhi@intel.com>
Signed-off-by: Zide Chen <zide.chen@intel.com>
Enable VMCS shadowing for most of the VMCS fields, so that execution of
the VMREAD or VMWRITE on these shadow VMCS fields from L1 hypervisor
won't cause VM exits, but read from or write to the shadow VMCS.
Tracked-On: #5923
Signed-off-by: Sainath Grandhi <sainath.grandhi@intel.com>
Signed-off-by: Alexander Merritt <alex.merritt@intel.com>
Signed-off-by: Zide Chen <zide.chen@intel.com>
Software layout of VMCS12 data is a contract between L1 guest and L0
hypervisor to run a L2 guest.
ACRN hypervisor caches the VMCS12 which is passed down from L1 hypervisor
by the VMPTRLD instructin. At the time of VMCLEAR, ACRN syncs the cached
VMCS12 back to L1 guest memory.
Tracked-On: #5923
Signed-off-by: Sainath Grandhi <sainath.grandhi@intel.com>
Signed-off-by: Zide Chen <zide.chen@intel.com>
Acked-by: Eddie Dong <eddie.dong@Intel.com>
This patch emulates the VMPTRLD instruction. L0 hypervisor (ACRN) caches
the VMCS12 that is passed down from the VMPTRLD instruction, and merges it
with VMCS01 to create VMCS02 to run the nested VM.
- Currently ACRN can't cache multiple VMCS12 on one vCPU, so it needs to
flushes active but not current VMCS12s to L1 guest.
- ACRN creates VMCS02 to run nested VM based on VMCS12:
1) copy VMCS12 from guest memory to the per vCPU cache VMCS12
2) initialize VMCS02 revision ID and host-state area
3) load shadow fields from cache VMCS12 to VMCS02
4) enable VMCS shadowing before L1 Vm entry
Tracked-On: #5923
Signed-off-by: Sainath Grandhi <sainath.grandhi@intel.com>
Signed-off-by: Zide Chen <zide.chen@intel.com>
This patch implements the VMXOFF instruction. By issuing VMXOFF,
L1 guest Leaves VMX Operation.
- cleanup VCPU nested virtualization context states in VMXOFF handler.
- implement check_vmx_permission() to check permission for VMX operation
for VMXOFF and other VMX instructions.
Tracked-On: #5923
Signed-off-by: Sainath Grandhi <sainath.grandhi@intel.com>
Signed-off-by: Zide Chen <zide.chen@intel.com>
Acked-by: Eddie Dong <eddie.dong@Intel.com>
According to VMXON Instruction Reference, do the following checks in the
virtual hardware environment: vCPU CPL, guest CR0, CR4, revision ID
in VMXON region, etc.
Currently ACRN doesn't support 32-bit L1 hypervisor, and injects an #UD
exception if L1 hypervisor is not running in 64-bit mode.
Tracked-On: #5923
Signed-off-by: Zide Chen <zide.chen@intel.com>
Acked-by: Eddie Dong <eddie.dong@Intel.com>
This patch emulates VMXON instruction. Basically checks some
prerequisites to enable VMX operation on L1 guest (next patch), and
prepares some virtual hardware environment in L0.
Tracked-On: #5923
Signed-off-by: Sainath Grandhi <sainath.grandhi@intel.com>
Signed-off-by: Zide Chen <zide.chen@intel.com>
Acked-by: Eddie Dong <eddie.dong@Intel.com>
Now guest would use `Destination Shorthand` to broadcast IPIs if there're more
than one destination. However, it is not supported when the guest is in LAPIC
passthru situation, and all active VCPUs are working in X2APIC mode. As a result,
the guest would not work properly since this kind broadcast IPIs was ignored
by ACRN. What's worse, ACRN Hypervisor would inject GP to the guest in this case.
This patch extend vlapic_x2apic_pt_icr_access to support more destination modes
(both `Physical` and `Logical`) and destination shorthand (`No Shorthand`, `Self`,
`All Including Self` and `All Excluding Self`).
Tracked-On: #5923
Signed-off-by: Zide Chen <zide.chen@intel.com>
Signed-off-by: Li Fei1 <fei1.li@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>