acrn-hypervisor/devicemodel/hw/pci/core.c
Li Fei1 460124f984 dm: e820: refine e820 layout
We don't reserve PCI MMIO in e820 Table, it's included in DSDT ACPI Table.
About 0xA0000 - 0x100000 entry, we don't have any ACPI Table touch this region.
So we could remove it too.

After this change, we could only pass the reserved e820 table which we must
reserve to OVMF. In this case, the OVMF could trust ACRN-DM and pass the
reserved e820 table to guest instead of dropping it.

This patch needs the corresponding modify in OVMF. Otherwise, the guest could
not boot.

Tracked-On: #4550
Signed-off-by: Li Fei1 <fei1.li@intel.com>
Acked-by: Wang, Yu1 <yu1.wang@intel.com>
2020-10-30 15:45:31 +08:00

2610 lines
62 KiB
C

/*-
* Copyright (c) 2011 NetApp, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <errno.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>
#include <assert.h>
#include <stdbool.h>
#include "dm.h"
#include "vmmapi.h"
#include "acpi.h"
#include "inout.h"
#include "ioapic.h"
#include "mem.h"
#include "pci_core.h"
#include "irq.h"
#include "lpc.h"
#include "sw_load.h"
#include "log.h"
#define CONF1_ADDR_PORT 0x0cf8
#define CONF1_DATA_PORT 0x0cfc
#define CONF1_ENABLE 0x80000000ul
#define MAXBUSES (PCI_BUSMAX + 1)
#define MAXSLOTS (PCI_SLOTMAX + 1)
#define MAXFUNCS (PCI_FUNCMAX + 1)
struct funcinfo {
char *fi_name;
char *fi_param;
char *fi_param_saved; /* save for reboot */
struct pci_vdev *fi_devi;
};
struct intxinfo {
int ii_count;
int ii_pirq_pin;
int ii_ioapic_irq;
};
struct slotinfo {
struct intxinfo si_intpins[4];
struct funcinfo si_funcs[MAXFUNCS];
};
struct businfo {
uint16_t iobase, iolimit; /* I/O window */
uint32_t membase32, memlimit32; /* mmio window below 4GB */
uint64_t membase64, memlimit64; /* mmio window above 4GB */
struct slotinfo slotinfo[MAXSLOTS];
};
static struct businfo *pci_businfo[MAXBUSES];
SET_DECLARE(pci_vdev_ops_set, struct pci_vdev_ops);
static uint64_t pci_emul_iobase;
static uint64_t pci_emul_membase32;
static uint64_t pci_emul_membase64;
extern bool skip_pci_mem64bar_workaround;
struct mmio_rsvd_rgn reserved_bar_regions[REGION_NUMS];
#define PCI_EMUL_IOBASE 0x2000
#define PCI_EMUL_IOLIMIT 0x10000
#define PCI_EMUL_ECFG_SIZE (MAXBUSES * 1024 * 1024) /* 1MB per bus */
SYSRES_MEM(PCI_EMUL_ECFG_BASE, PCI_EMUL_ECFG_SIZE);
static struct pci_vdev_ops *pci_emul_finddev(char *name);
static void pci_lintr_route(struct pci_vdev *dev);
static void pci_lintr_update(struct pci_vdev *dev);
static void pci_cfgrw(struct vmctx *ctx, int vcpu, int in, int bus, int slot,
int func, int coff, int bytes, uint32_t *val);
static void pci_emul_free_msixcap(struct pci_vdev *pdi);
int compare_mmio_rgns(const void *data1, const void *data2)
{
struct mmio_rsvd_rgn *rng1, *rng2;
rng1 = (struct mmio_rsvd_rgn*)data1;
rng2 = (struct mmio_rsvd_rgn*)data2;
if(!rng1->vdev)
return 1;
if(!rng2->vdev)
return -1;
return (rng1->start - rng2->start);
}
/* FIXME: the new registered region may overlap with exist mmio regions
* whatever they are registered by dm or reserved.
* Due to we only has gvt-g to use this feature,
* this case rarely happen.
*/
int create_mmio_rsvd_rgn(uint64_t start,
uint64_t end, int idx, int bar_type, struct pci_vdev *vdev)
{
int i;
if(bar_type == PCIBAR_IO){
pr_err("fail to create PCIBAR_IO bar_type\n");
return -1;
}
for(i = 0; i < REGION_NUMS; i++){
if(reserved_bar_regions[i].vdev == NULL){
reserved_bar_regions[i].start = start;
reserved_bar_regions[i].end = end;
reserved_bar_regions[i].idx = idx;
reserved_bar_regions[i].bar_type = bar_type;
reserved_bar_regions[i].vdev = vdev;
/* sort reserved_bar_regions array by "start" member,
* if this mmio_rsvd_rgn is not used, put it in the last.
*/
qsort((void*)reserved_bar_regions, REGION_NUMS,
sizeof(reserved_bar_regions[0]), compare_mmio_rgns);
return 0;
}
}
pr_err("reserved_bar_regions is overflow\n");
return -1;
}
void destory_mmio_rsvd_rgns(struct pci_vdev *vdev){
int i;
for(i = 0; i < REGION_NUMS; i++)
if(reserved_bar_regions[i].vdev == vdev)
reserved_bar_regions[i].vdev = NULL;
}
static bool
is_mmio_rgns_overlap(uint64_t x1, uint64_t x2, uint64_t y1, uint64_t y2)
{
if(x1 <= y2 && y1 <= x2)
return true;
return false;
}
/* reserved_bar_regions has sorted mmio_rsvd_rgns.
* iterate all mmio_rsvd_rgn in reserved_bar_regions,
* if [base, base + size - 1] with any mmio_rsvd_rgn,
* adjust base addr to ensure [base, base + size - 1]
* won't overlap with reserved mmio_rsvd_rgn
*/
static void
adjust_bar_region(uint64_t *base, uint64_t size, int bar_type)
{
int i;
for(i = 0; i < REGION_NUMS; i++){
if(!reserved_bar_regions[i].vdev ||
reserved_bar_regions[i].bar_type != bar_type)
continue;
if(is_mmio_rgns_overlap(reserved_bar_regions[i].start,
reserved_bar_regions[i].end, *base, *base + size -1)){
*base = roundup2(reserved_bar_regions[i].end + 1, size);
}
}
}
static inline void
CFGWRITE(struct pci_vdev *dev, int coff, uint32_t val, int bytes)
{
if (bytes == 1)
pci_set_cfgdata8(dev, coff, val);
else if (bytes == 2)
pci_set_cfgdata16(dev, coff, val);
else
pci_set_cfgdata32(dev, coff, val);
}
static inline uint32_t
CFGREAD(struct pci_vdev *dev, int coff, int bytes)
{
if (bytes == 1)
return pci_get_cfgdata8(dev, coff);
else if (bytes == 2)
return pci_get_cfgdata16(dev, coff);
else
return pci_get_cfgdata32(dev, coff);
}
static inline int
is_pt_pci(struct pci_vdev *dev)
{
if (dev == NULL || strncmp(dev->dev_ops->class_name, "passthru",8))
return 0;
else
return 1;
}
/*
* I/O access
*/
/*
* Slot options are in the form:
*
* <bus>:<slot>:<func>,<emul>[,<config>]
* <slot>[:<func>],<emul>[,<config>]
*
* slot is 0..31
* func is 0..7
* emul is a string describing the type of PCI device e.g. virtio-net
* config is an optional string, depending on the device, that can be
* used for configuration.
* Examples are:
* 1,virtio-net,tap0
* 3:0,dummy
*/
static void
pci_parse_slot_usage(char *aopt)
{
pr_err("Invalid PCI slot info field \"%s\"\n", aopt);
}
int
parse_bdf(char *s, int *bus, int *dev, int *func, int base)
{
char *s_bus, *s_dev, *s_func;
char *str, *cp;
int ret = 0;
str = cp = strdup(s);
bus ? *bus = 0 : 0;
dev ? *dev = 0 : 0;
func ? *func = 0 : 0;
s_bus = s_dev = s_func = NULL;
s_dev = strsep(&cp, ":/.");
if (cp) {
s_func = strsep(&cp, ":/.");
if (cp) {
s_bus = s_dev;
s_dev = s_func;
s_func = strsep(&cp, ":/.");
}
}
if (s_dev && dev)
ret |= dm_strtoi(s_dev, &s_dev, base, dev);
if (s_func && func)
ret |= dm_strtoi(s_func, &s_func, base, func);
if (s_bus && bus)
ret |= dm_strtoi(s_bus, &s_bus, base, bus);
free(str);
return ret;
}
int
pci_parse_slot(char *opt)
{
struct businfo *bi;
struct slotinfo *si;
char *emul, *config, *str, *cp, *b = NULL;
int error, bnum, snum, fnum;
error = -1;
str = strdup(opt);
if (!str) {
pr_err("%s: strdup returns NULL\n", __func__);
return -1;
}
emul = config = NULL;
cp = str;
str = strsep(&cp, ",");
if (cp) {
emul = strsep(&cp, ",");
/* for boot device */
if (cp && *cp == 'b' && *(cp+1) == ',')
b = strsep(&cp, ",");
config = cp;
} else {
pci_parse_slot_usage(opt);
goto done;
}
/* <bus>:<slot>:<func> */
if (parse_bdf(str, &bnum, &snum, &fnum, 10) != 0)
snum = -1;
if (bnum < 0 || bnum >= MAXBUSES || snum < 0 || snum >= MAXSLOTS ||
fnum < 0 || fnum >= MAXFUNCS) {
pci_parse_slot_usage(opt);
goto done;
}
if (pci_businfo[bnum] == NULL)
pci_businfo[bnum] = calloc(1, sizeof(struct businfo));
bi = pci_businfo[bnum];
si = &bi->slotinfo[snum];
if (si->si_funcs[fnum].fi_name != NULL) {
pr_err("pci slot %d:%d already occupied!\n",
snum, fnum);
goto done;
}
if (pci_emul_finddev(emul) == NULL) {
pr_err("pci slot %d:%d: unknown device \"%s\"\n",
snum, fnum, emul);
goto done;
}
error = 0;
si->si_funcs[fnum].fi_name = emul;
/* saved fi param in case reboot */
si->si_funcs[fnum].fi_param_saved = config;
if (b != NULL) {
if ((strcmp("virtio-blk", emul) == 0) && (b != NULL) &&
(strchr(b, 'b') != NULL)) {
vsbl_set_bdf(bnum, snum, fnum);
}
}
done:
if (error)
free(str);
return error;
}
static int
pci_valid_pba_offset(struct pci_vdev *dev, uint64_t offset)
{
if (offset < dev->msix.pba_offset)
return 0;
if (offset >= dev->msix.pba_offset + dev->msix.pba_size)
return 0;
return 1;
}
int
pci_emul_msix_twrite(struct pci_vdev *dev, uint64_t offset, int size,
uint64_t value)
{
int msix_entry_offset;
int tab_index;
char *dest;
/* support only 4 or 8 byte writes */
if (size != 4 && size != 8)
return -1;
/*
* Return if table index is beyond what device supports
*/
tab_index = offset / MSIX_TABLE_ENTRY_SIZE;
if (tab_index >= dev->msix.table_count)
return -1;
msix_entry_offset = offset % MSIX_TABLE_ENTRY_SIZE;
/* support only aligned writes */
if ((msix_entry_offset % size) != 0)
return -1;
dest = (char *)(dev->msix.table + tab_index);
dest += msix_entry_offset;
if (size == 4)
*((uint32_t *)dest) = value;
else
*((uint64_t *)dest) = value;
return 0;
}
uint64_t
pci_emul_msix_tread(struct pci_vdev *dev, uint64_t offset, int size)
{
char *dest;
int msix_entry_offset;
int tab_index;
uint64_t retval = ~0;
/*
* The PCI standard only allows 4 and 8 byte accesses to the MSI-X
* table but we also allow 1 byte access to accommodate reads from
* ddb.
*/
if (size != 1 && size != 4 && size != 8)
return retval;
msix_entry_offset = offset % MSIX_TABLE_ENTRY_SIZE;
/* support only aligned reads */
if ((msix_entry_offset % size) != 0)
return retval;
tab_index = offset / MSIX_TABLE_ENTRY_SIZE;
if (tab_index < dev->msix.table_count) {
/* valid MSI-X Table access */
dest = (char *)(dev->msix.table + tab_index);
dest += msix_entry_offset;
if (size == 1)
retval = *((uint8_t *)dest);
else if (size == 4)
retval = *((uint32_t *)dest);
else
retval = *((uint64_t *)dest);
} else if (pci_valid_pba_offset(dev, offset)) {
/* return 0 for PBA access */
retval = 0;
}
return retval;
}
int
pci_msix_table_bar(struct pci_vdev *dev)
{
if (dev->msix.table != NULL)
return dev->msix.table_bar;
else
return -1;
}
int
pci_msix_pba_bar(struct pci_vdev *dev)
{
if (dev->msix.table != NULL)
return dev->msix.pba_bar;
else
return -1;
}
static inline uint64_t
bar_value(int size, uint64_t val)
{
uint64_t mask;
assert(size == 1 || size == 2 || size == 4 || size == 8);
mask = (size < 8 ? 1UL << (size * 8) : 0UL) - 1;
return val & mask;
}
static int
pci_emul_io_handler(struct vmctx *ctx, int vcpu, int in, int port, int bytes,
uint32_t *eax, void *arg)
{
struct pci_vdev *pdi = arg;
struct pci_vdev_ops *ops = pdi->dev_ops;
uint64_t offset;
int i;
for (i = 0; i <= PCI_BARMAX; i++) {
if (pdi->bar[i].type == PCIBAR_IO &&
port >= pdi->bar[i].addr &&
port + bytes <= pdi->bar[i].addr + pdi->bar[i].size) {
offset = port - pdi->bar[i].addr;
if (in) {
*eax = (*ops->vdev_barread)(ctx, vcpu, pdi, i,
offset, bytes);
*eax = bar_value(bytes, *eax);
} else
(*ops->vdev_barwrite)(ctx, vcpu, pdi, i, offset,
bytes, bar_value(bytes, *eax));
return 0;
}
}
return -1;
}
static int
pci_emul_mem_handler(struct vmctx *ctx, int vcpu, int dir, uint64_t addr,
int size, uint64_t *val, void *arg1, long arg2)
{
struct pci_vdev *pdi = arg1;
struct pci_vdev_ops *ops = pdi->dev_ops;
uint64_t offset;
int bidx = (int) arg2;
if (addr + size > pdi->bar[bidx].addr + pdi->bar[bidx].size) {
pr_err("%s, Out of emulated memory range\n", __func__);
return -ESRCH;
}
offset = addr - pdi->bar[bidx].addr;
if (dir == MEM_F_WRITE) {
if (size == 8) {
(*ops->vdev_barwrite)(ctx, vcpu, pdi, bidx, offset,
4, *val & 0xffffffff);
(*ops->vdev_barwrite)(ctx, vcpu, pdi, bidx, offset + 4,
4, *val >> 32);
} else {
(*ops->vdev_barwrite)(ctx, vcpu, pdi, bidx, offset,
size, bar_value(size, *val));
}
} else {
if (size == 8) {
uint64_t val_lo, val_hi;
val_lo = (*ops->vdev_barread)(ctx, vcpu, pdi, bidx,
offset, 4);
val_lo = bar_value(4, val_lo);
val_hi = (*ops->vdev_barread)(ctx, vcpu, pdi, bidx,
offset + 4, 4);
*val = val_lo | (val_hi << 32);
} else {
*val = (*ops->vdev_barread)(ctx, vcpu, pdi, bidx,
offset, size);
*val = bar_value(size, *val);
}
}
return 0;
}
static int
pci_emul_alloc_resource(uint64_t *baseptr, uint64_t limit, uint64_t size,
uint64_t *addr, int bar_type)
{
uint64_t base;
if ((size & (size - 1)) != 0) { /* must be a power of 2 */
pr_err("%s: Cannot alloc invalid size %lld resource\n", __func__, size);
return -1;
}
base = roundup2(*baseptr, size);
/* TODO:Currently, we only reserve gvt mmio regions,
* so ignore PCIBAR_IO when adjust_bar_region.
* If other devices also use reserved bar regions later,
* need remove pcibar_type != PCIBAR_IO condition
*/
if(bar_type != PCIBAR_IO)
adjust_bar_region(&base, size, bar_type);
if (base + size <= limit) {
*addr = base;
*baseptr = base + size;
return 0;
} else
return -1;
}
int
pci_emul_alloc_bar(struct pci_vdev *pdi, int idx, enum pcibar_type type,
uint64_t size)
{
return pci_emul_alloc_pbar(pdi, idx, 0, type, size);
}
/*
* Register (or unregister) the MMIO or I/O region associated with the BAR
* register 'idx' of an emulated pci device.
*/
static int
modify_bar_registration(struct pci_vdev *dev, int idx, int registration)
{
int error;
struct inout_port iop;
struct mem_range mr;
if (is_pt_pci(dev)) {
pr_dbg("%s: bypass for pci-passthru %x:%x.%x\n", __func__, dev->bus, dev->slot, dev->func);
return 0;
}
switch (dev->bar[idx].type) {
case PCIBAR_IO:
bzero(&iop, sizeof(struct inout_port));
iop.name = dev->name;
iop.port = dev->bar[idx].addr;
iop.size = dev->bar[idx].size;
if (registration) {
iop.flags = IOPORT_F_INOUT;
iop.handler = pci_emul_io_handler;
iop.arg = dev;
error = register_inout(&iop);
} else
error = unregister_inout(&iop);
break;
case PCIBAR_MEM32:
case PCIBAR_MEM64:
bzero(&mr, sizeof(struct mem_range));
mr.name = dev->name;
mr.base = dev->bar[idx].addr;
mr.size = dev->bar[idx].size;
if (registration) {
mr.flags = MEM_F_RW;
mr.handler = pci_emul_mem_handler;
mr.arg1 = dev;
mr.arg2 = idx;
error = register_mem(&mr);
} else
error = unregister_mem(&mr);
break;
default:
error = EINVAL;
break;
}
return error;
}
static void
unregister_bar(struct pci_vdev *dev, int idx)
{
modify_bar_registration(dev, idx, 0);
}
static int
register_bar(struct pci_vdev *dev, int idx)
{
return modify_bar_registration(dev, idx, 1);
}
/* Are we decoding i/o port accesses for the emulated pci device? */
static bool
porten(struct pci_vdev *dev)
{
uint16_t cmd;
cmd = pci_get_cfgdata16(dev, PCIR_COMMAND);
return (cmd & PCIM_CMD_PORTEN) != 0;
}
/* Are we decoding memory accesses for the emulated pci device? */
static bool
memen(struct pci_vdev *dev)
{
uint16_t cmd;
cmd = pci_get_cfgdata16(dev, PCIR_COMMAND);
return (cmd & PCIM_CMD_MEMEN) != 0;
}
/*
* Update the MMIO or I/O address that is decoded by the BAR register.
*
* If the pci device has enabled the address space decoding then intercept
* the address range decoded by the BAR register.
*/
static void
update_bar_address(struct vmctx *ctx, struct pci_vdev *dev, uint64_t addr,
int idx, int type, bool ignore_reg_unreg)
{
bool decode = false;
if (!ignore_reg_unreg) {
if (dev->bar[idx].type == PCIBAR_IO)
decode = porten(dev);
else
decode = memen(dev);
}
if (decode)
unregister_bar(dev, idx);
/* TODO:Currently, we only reserve gvt mmio regions,
* so ignore PCIBAR_IO when adjust_bar_region_with_reserved_bars.
* If other devices also use reserved bar regions later,
* need remove pcibar_type != PCIBAR_IO condition
*/
if(type != PCIBAR_IO && ctx->gvt_enabled)
/* uos kernel may update gvt bars' value,
* but ACRN-DM doesn't know this update.
* When other pci devices write bar address,
* ACRN-DM need update vgpu bars' info.
*/
ctx->update_gvt_bar(ctx);
switch (type) {
case PCIBAR_IO:
case PCIBAR_MEM32:
dev->bar[idx].addr = addr;
break;
case PCIBAR_MEM64:
dev->bar[idx].addr &= ~0xffffffffUL;
dev->bar[idx].addr |= addr;
break;
case PCIBAR_MEMHI64:
dev->bar[idx].addr &= 0xffffffff;
dev->bar[idx].addr |= addr;
break;
default:
pr_err("%s: invalid bar type %d\n", __func__, type);
return;
}
if (decode)
register_bar(dev, idx);
}
static struct mmio_rsvd_rgn *
get_mmio_rsvd_rgn_by_vdev_idx(struct pci_vdev *pdi, int idx)
{
int i;
for(i = 0; i < REGION_NUMS; i++){
if(reserved_bar_regions[i].vdev &&
reserved_bar_regions[i].idx == idx &&
reserved_bar_regions[i].vdev == pdi)
return &reserved_bar_regions[i];
}
return NULL;
}
int
pci_emul_alloc_pbar(struct pci_vdev *pdi, int idx, uint64_t hostbase,
enum pcibar_type type, uint64_t size)
{
int error;
uint64_t *baseptr, limit, addr, mask, lobits, bar;
struct mmio_rsvd_rgn *region;
if ((size & (size - 1)) != 0)
size = 1UL << flsl(size); /* round up to a power of 2 */
/* Enforce minimum BAR sizes required by the PCI standard */
if (type == PCIBAR_IO) {
if (size < 4)
size = 4;
} else {
if (size < 16)
size = 16;
}
switch (type) {
case PCIBAR_NONE:
baseptr = NULL;
addr = mask = lobits = 0;
break;
case PCIBAR_IO:
baseptr = &pci_emul_iobase;
limit = PCI_EMUL_IOLIMIT;
mask = PCIM_BAR_IO_BASE;
lobits = PCIM_BAR_IO_SPACE;
break;
case PCIBAR_MEM64:
if (idx + 1 > PCI_BARMAX) {
pr_err("%s: invalid bar number %d for MEM64 type\n", __func__, idx);
return -1;
}
/*
* FIXME
* Some drivers do not work well if the 64-bit BAR is allocated
* above 4GB. Allow for this by allocating small requests under
* 4GB unless then allocation size is larger than some arbitrary
* number (32MB currently). If guest booted by ovmf, then skip the
* workaround.
*/
if (!skip_pci_mem64bar_workaround && (size <= 32 * 1024 * 1024)) {
baseptr = &pci_emul_membase32;
limit = PCI_EMUL_MEMLIMIT32;
mask = PCIM_BAR_MEM_BASE;
lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64;
break;
}
/*
* XXX special case for device requiring peer-peer DMA
*/
if (size == 0x100000000UL)
baseptr = &hostbase;
else
baseptr = &pci_emul_membase64;
limit = PCI_EMUL_MEMLIMIT64;
mask = PCIM_BAR_MEM_BASE;
lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64 |
PCIM_BAR_MEM_PREFETCH;
break;
case PCIBAR_MEM32:
baseptr = &pci_emul_membase32;
limit = PCI_EMUL_MEMLIMIT32;
mask = PCIM_BAR_MEM_BASE;
lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_32;
break;
default:
pr_err("%s: invalid bar type %d\n", __func__, type);
return -1;
}
region = get_mmio_rsvd_rgn_by_vdev_idx(pdi, idx);
if(region)
addr = region->start;
if (baseptr != NULL && !region) {
error = pci_emul_alloc_resource(baseptr, limit, size, &addr, type);
if (error != 0)
return error;
}
pdi->bar[idx].type = type;
pdi->bar[idx].addr = addr;
pdi->bar[idx].size = size;
/* Initialize the BAR register in config space */
bar = (addr & mask) | lobits;
pci_set_cfgdata32(pdi, PCIR_BAR(idx), bar);
if (type == PCIBAR_MEM64) {
pdi->bar[idx + 1].type = PCIBAR_MEMHI64;
pci_set_cfgdata32(pdi, PCIR_BAR(idx + 1), bar >> 32);
}
error = register_bar(pdi, idx);
if(error != 0){
/* FIXME: Currently, only gvt needs reserve regions.
* because gvt isn't firstly initialized, previous pci
* devices' bars may conflict with gvt bars.
* Use register_bar to detect this case,
* but this case rarely happen.
* If this case always happens, we need to
* change core.c code to ensure gvt firstly initialzed
*/
printf("%s failed to register_bar\n", pdi->name);
return error;
}
return 0;
}
void
pci_emul_free_bar(struct pci_vdev *pdi, int idx)
{
bool enabled;
if ((pdi->bar[idx].type != PCIBAR_NONE) &&
(pdi->bar[idx].type != PCIBAR_MEMHI64)){
/*
* Check whether the bar is enabled or not,
* if it is disabled then it should have been
* unregistered in pci_emul_cmdsts_write.
*/
if (pdi->bar[idx].type == PCIBAR_IO)
enabled = porten(pdi);
else
enabled = memen(pdi);
if (enabled)
unregister_bar(pdi, idx);
pdi->bar[idx].type = PCIBAR_NONE;
}
}
void
pci_emul_free_bars(struct pci_vdev *pdi)
{
int i;
for (i = 0; i < PCI_BARMAX; i++)
pci_emul_free_bar(pdi, i);
}
#define CAP_START_OFFSET 0x40
int
pci_emul_add_capability(struct pci_vdev *dev, u_char *capdata, int caplen)
{
int i, capoff, reallen;
uint16_t sts;
reallen = roundup2(caplen, 4); /* dword aligned */
sts = pci_get_cfgdata16(dev, PCIR_STATUS);
if ((sts & PCIM_STATUS_CAPPRESENT) == 0)
capoff = CAP_START_OFFSET;
else
capoff = dev->capend + 1;
/* Check if we have enough space */
if (capoff + reallen > PCI_REGMAX + 1)
return -1;
/* Set the previous capability pointer */
if ((sts & PCIM_STATUS_CAPPRESENT) == 0) {
pci_set_cfgdata8(dev, PCIR_CAP_PTR, capoff);
pci_set_cfgdata16(dev, PCIR_STATUS, sts|PCIM_STATUS_CAPPRESENT);
} else
pci_set_cfgdata8(dev, dev->prevcap + 1, capoff);
/* Copy the capability */
for (i = 0; i < caplen; i++)
pci_set_cfgdata8(dev, capoff + i, capdata[i]);
/* Set the next capability pointer */
pci_set_cfgdata8(dev, capoff + 1, 0);
dev->prevcap = capoff;
dev->capend = capoff + reallen - 1;
return 0;
}
/*
* p_capoff is used as both input and output. Set *p_capoff to 0 when this
* function is called for the first time, it will return offset of the first
* matched one in p_capoff. To find the next matched one, please use the
* returned *p_capoff from last call as the input, in this case the offset of
* the next matched one will be returned in *p_capoff.
* Please check the returned value first before touch p_capoff.
*/
int
pci_emul_find_capability(struct pci_vdev *dev, uint8_t capid, int *p_capoff)
{
int coff;
uint16_t sts;
sts = pci_get_cfgdata16(dev, PCIR_STATUS);
if ((sts & PCIM_STATUS_CAPPRESENT) == 0)
return -1;
if (!p_capoff)
return -1;
if (*p_capoff == 0)
coff = pci_get_cfgdata8(dev, PCIR_CAP_PTR);
else if (*p_capoff >= CAP_START_OFFSET && *p_capoff <= dev->prevcap)
coff = pci_get_cfgdata8(dev, *p_capoff + 1);
else
return -1;
while (coff >= CAP_START_OFFSET && coff <= dev->prevcap) {
if (pci_get_cfgdata8(dev, coff) == capid) {
*p_capoff = coff;
return 0;
}
coff = pci_get_cfgdata8(dev, coff + 1);
}
return -1;
}
static struct pci_vdev_ops *
pci_emul_finddev(char *name)
{
struct pci_vdev_ops **pdpp, *pdp;
SET_FOREACH(pdpp, pci_vdev_ops_set) {
pdp = *pdpp;
if (!strcmp(pdp->class_name, name))
return pdp;
}
return NULL;
}
static int
pci_emul_init(struct vmctx *ctx, struct pci_vdev_ops *ops, int bus, int slot,
int func, struct funcinfo *fi)
{
struct pci_vdev *pdi;
int err;
pdi = calloc(1, sizeof(struct pci_vdev));
if (!pdi) {
pr_err("%s: calloc returns NULL\n", __func__);
return -1;
}
pdi->vmctx = ctx;
pdi->bus = bus;
pdi->slot = slot;
pdi->func = func;
pthread_mutex_init(&pdi->lintr.lock, NULL);
pdi->lintr.pin = 0;
pdi->lintr.state = IDLE;
pdi->lintr.pirq_pin = 0;
pdi->lintr.ioapic_irq = 0;
pdi->dev_ops = ops;
snprintf(pdi->name, PI_NAMESZ, "%s-pci-%d", ops->class_name, slot);
/* Disable legacy interrupts */
pci_set_cfgdata8(pdi, PCIR_INTLINE, 255);
pci_set_cfgdata8(pdi, PCIR_INTPIN, 0);
pci_set_cfgdata8(pdi, PCIR_COMMAND,
PCIM_CMD_PORTEN | PCIM_CMD_MEMEN | PCIM_CMD_BUSHOSTEN);
if (fi->fi_param_saved)
fi->fi_param = strdup(fi->fi_param_saved);
else
fi->fi_param = NULL;
err = (*ops->vdev_init)(ctx, pdi, fi->fi_param);
if (err == 0)
fi->fi_devi = pdi;
else
free(pdi);
return err;
}
static void
pci_emul_deinit(struct vmctx *ctx, struct pci_vdev_ops *ops, int bus, int slot,
int func, struct funcinfo *fi)
{
if (ops->vdev_deinit && fi->fi_devi)
(*ops->vdev_deinit)(ctx, fi->fi_devi, fi->fi_param);
if (fi->fi_param)
free(fi->fi_param);
if (fi->fi_devi) {
pci_lintr_release(fi->fi_devi);
pci_emul_free_bars(fi->fi_devi);
pci_emul_free_msixcap(fi->fi_devi);
free(fi->fi_devi);
}
}
int
pci_populate_msicap(struct msicap *msicap, int msgnum, int nextptr)
{
int mmc;
/* Number of msi messages must be a power of 2 between 1 and 32 */
if (((msgnum & (msgnum - 1)) != 0) || msgnum < 1 || msgnum > 32) {
pr_err("%s: invalid number of msi messages!\n", __func__);
return -1;
}
mmc = ffs(msgnum) - 1;
bzero(msicap, sizeof(struct msicap));
msicap->capid = PCIY_MSI;
msicap->nextptr = nextptr;
msicap->msgctrl = PCIM_MSICTRL_64BIT | (mmc << 1);
return 0;
}
int
pci_emul_add_msicap(struct pci_vdev *dev, int msgnum)
{
struct msicap msicap;
return pci_populate_msicap(&msicap, msgnum, 0) ||
pci_emul_add_capability(dev, (u_char *)&msicap, sizeof(msicap));
}
static void
pci_populate_msixcap(struct msixcap *msixcap, int msgnum, int barnum,
uint32_t msix_tab_size)
{
bzero(msixcap, sizeof(struct msixcap));
msixcap->capid = PCIY_MSIX;
/*
* Message Control Register, all fields set to
* zero except for the Table Size.
* Note: Table size N is encoded as N-1
*/
msixcap->msgctrl = msgnum - 1;
/*
* MSI-X BAR setup:
* - MSI-X table start at offset 0
* - PBA table starts at a 4K aligned offset after the MSI-X table
*/
msixcap->table_info = barnum & PCIM_MSIX_BIR_MASK;
msixcap->pba_info = msix_tab_size | (barnum & PCIM_MSIX_BIR_MASK);
}
static int
pci_msix_table_init(struct pci_vdev *dev, int table_entries)
{
int i, table_size;
table_size = table_entries * MSIX_TABLE_ENTRY_SIZE;
dev->msix.table = calloc(1, table_size);
if (!dev->msix.table) {
pr_err("%s: Cannot alloc memory!\n", __func__);
return -1;
}
/* set mask bit of vector control register */
for (i = 0; i < table_entries; i++)
dev->msix.table[i].vector_control |= PCIM_MSIX_VCTRL_MASK;
return 0;
}
int
pci_emul_add_msixcap(struct pci_vdev *dev, int msgnum, int barnum)
{
uint32_t tab_size;
struct msixcap msixcap;
if (msgnum > MAX_MSIX_TABLE_ENTRIES) {
pr_err("%s: Too many entries!\n", __func__);
return -1;
}
tab_size = msgnum * MSIX_TABLE_ENTRY_SIZE;
/* Align table size to nearest 4K */
tab_size = roundup2(tab_size, 4096);
dev->msix.table_bar = barnum;
dev->msix.pba_bar = barnum;
dev->msix.table_offset = 0;
dev->msix.table_count = msgnum;
dev->msix.pba_offset = tab_size;
dev->msix.pba_size = PBA_SIZE(msgnum);
if (pci_msix_table_init(dev, msgnum) != 0)
return -1;
pci_populate_msixcap(&msixcap, msgnum, barnum, tab_size);
/* allocate memory for MSI-X Table and PBA */
pci_emul_alloc_bar(dev, barnum, PCIBAR_MEM32,
tab_size + dev->msix.pba_size);
return (pci_emul_add_capability(dev, (u_char *)&msixcap,
sizeof(msixcap)));
}
static void
pci_emul_free_msixcap(struct pci_vdev *pdi)
{
if (pdi->msix.table) {
free(pdi->msix.table);
pdi->msix.table = NULL;
}
}
void
msixcap_cfgwrite(struct pci_vdev *dev, int capoff, int offset,
int bytes, uint32_t val)
{
uint16_t msgctrl, rwmask;
int off;
off = offset - capoff;
/* Message Control Register */
if (off == 2 && bytes == 2) {
rwmask = PCIM_MSIXCTRL_MSIX_ENABLE |
PCIM_MSIXCTRL_FUNCTION_MASK;
msgctrl = pci_get_cfgdata16(dev, offset);
msgctrl &= ~rwmask;
msgctrl |= val & rwmask;
val = msgctrl;
dev->msix.enabled = val & PCIM_MSIXCTRL_MSIX_ENABLE;
dev->msix.function_mask = val & PCIM_MSIXCTRL_FUNCTION_MASK;
pci_lintr_update(dev);
}
CFGWRITE(dev, offset, val, bytes);
}
void
msicap_cfgwrite(struct pci_vdev *dev, int capoff, int offset,
int bytes, uint32_t val)
{
uint16_t msgctrl, rwmask, msgdata, mme;
uint32_t addrlo;
/*
* If guest is writing to the message control register make sure
* we do not overwrite read-only fields.
*/
if ((offset - capoff) == 2 && bytes == 2) {
rwmask = PCIM_MSICTRL_MME_MASK | PCIM_MSICTRL_MSI_ENABLE;
msgctrl = pci_get_cfgdata16(dev, offset);
msgctrl &= ~rwmask;
msgctrl |= val & rwmask;
val = msgctrl;
addrlo = pci_get_cfgdata32(dev, capoff + 4);
if (msgctrl & PCIM_MSICTRL_64BIT)
msgdata = pci_get_cfgdata16(dev, capoff + 12);
else
msgdata = pci_get_cfgdata16(dev, capoff + 8);
mme = msgctrl & PCIM_MSICTRL_MME_MASK;
dev->msi.enabled = msgctrl & PCIM_MSICTRL_MSI_ENABLE ? 1 : 0;
if (dev->msi.enabled) {
dev->msi.addr = addrlo;
dev->msi.msg_data = msgdata;
dev->msi.maxmsgnum = 1 << (mme >> 4);
} else {
dev->msi.maxmsgnum = 0;
}
pci_lintr_update(dev);
}
CFGWRITE(dev, offset, val, bytes);
}
void
pciecap_cfgwrite(struct pci_vdev *dev, int capoff, int offset,
int bytes, uint32_t val)
{
/* XXX don't write to the readonly parts */
CFGWRITE(dev, offset, val, bytes);
}
#define PCIECAP_VERSION 0x2
int
pci_emul_add_pciecap(struct pci_vdev *dev, int type)
{
int err;
struct pciecap pciecap;
if (type != PCIEM_TYPE_ROOT_PORT)
return -1;
bzero(&pciecap, sizeof(pciecap));
pciecap.capid = PCIY_EXPRESS;
pciecap.pcie_capabilities = PCIECAP_VERSION | PCIEM_TYPE_ROOT_PORT;
pciecap.link_capabilities = 0x411; /* gen1, x1 */
pciecap.link_status = 0x11; /* gen1, x1 */
err = pci_emul_add_capability(dev, (u_char *)&pciecap, sizeof(pciecap));
return err;
}
/*
* This function assumes that 'coff' is in the capabilities region of the
* config space.
*/
static void
pci_emul_capwrite(struct pci_vdev *dev, int offset, int bytes, uint32_t val)
{
int capid;
uint8_t capoff, nextoff;
/* Do not allow un-aligned writes */
if ((offset & (bytes - 1)) != 0)
return;
/* Find the capability that we want to update */
capoff = CAP_START_OFFSET;
while (1) {
nextoff = pci_get_cfgdata8(dev, capoff + 1);
if (nextoff == 0)
break;
if (offset >= capoff && offset < nextoff)
break;
capoff = nextoff;
}
/*
* Capability ID and Next Capability Pointer are readonly.
* However, some o/s's do 4-byte writes that include these.
* For this case, trim the write back to 2 bytes and adjust
* the data.
*/
if (offset == capoff || offset == capoff + 1) {
if (offset == capoff && bytes == 4) {
bytes = 2;
offset += 2;
val >>= 16;
} else
return;
}
capid = pci_get_cfgdata8(dev, capoff);
switch (capid) {
case PCIY_MSI:
msicap_cfgwrite(dev, capoff, offset, bytes, val);
break;
case PCIY_MSIX:
msixcap_cfgwrite(dev, capoff, offset, bytes, val);
break;
case PCIY_EXPRESS:
pciecap_cfgwrite(dev, capoff, offset, bytes, val);
break;
default:
CFGWRITE(dev, offset, val, bytes);
break;
}
}
static int
pci_emul_iscap(struct pci_vdev *dev, int offset)
{
uint16_t sts;
sts = pci_get_cfgdata16(dev, PCIR_STATUS);
if ((sts & PCIM_STATUS_CAPPRESENT) != 0) {
if (offset >= CAP_START_OFFSET && offset <= dev->capend)
return 1;
}
return 0;
}
static int
pci_emul_fallback_handler(struct vmctx *ctx, int vcpu, int dir, uint64_t addr,
int size, uint64_t *val, void *arg1, long arg2)
{
/*
* Ignore writes; return 0xff's for reads. The mem read code
* will take care of truncating to the correct size.
*/
if (dir == MEM_F_READ)
*val = 0xffffffffffffffff;
return 0;
}
static int
pci_emul_ecfg_handler(struct vmctx *ctx, int vcpu, int dir, uint64_t addr,
int bytes, uint64_t *val, void *arg1, long arg2)
{
int bus, slot, func, coff, in;
coff = addr & 0xfff;
func = (addr >> 12) & 0x7;
slot = (addr >> 15) & 0x1f;
bus = (addr >> 20) & 0xff;
in = (dir == MEM_F_READ);
if (in)
*val = ~0UL;
pci_cfgrw(ctx, vcpu, in, bus, slot, func, coff, bytes, (uint32_t *)val);
return 0;
}
#define BUSIO_ROUNDUP 32
#define BUSMEM_ROUNDUP (1024 * 1024)
int
init_pci(struct vmctx *ctx)
{
struct mem_range mr;
struct pci_vdev_ops *ops;
struct businfo *bi;
struct slotinfo *si;
struct funcinfo *fi;
int bus, slot, func, i;
int success_cnt = 0;
int error;
uint64_t bus0_memlimit;
pci_emul_iobase = PCI_EMUL_IOBASE;
pci_emul_membase32 = vm_get_lowmem_limit(ctx);
pci_emul_membase64 = PCI_EMUL_MEMBASE64;
create_gsi_sharing_groups();
for (bus = 0; bus < MAXBUSES; bus++) {
bi = pci_businfo[bus];
if (bi == NULL)
continue;
/*
* Keep track of the i/o and memory resources allocated to
* this bus.
*/
bi->iobase = pci_emul_iobase;
bi->membase32 = pci_emul_membase32;
bi->membase64 = pci_emul_membase64;
for (slot = 0; slot < MAXSLOTS; slot++) {
si = &bi->slotinfo[slot];
for (func = 0; func < MAXFUNCS; func++) {
fi = &si->si_funcs[func];
if (fi->fi_name == NULL)
continue;
ops = pci_emul_finddev(fi->fi_name);
if (!ops) {
pr_warn("No driver for device [%s]\n", fi->fi_name);
continue;
}
pr_notice("pci init %s\r\n", fi->fi_name);
error = pci_emul_init(ctx, ops, bus, slot,
func, fi);
if (error) {
pr_err("pci %s init failed\n", fi->fi_name);
goto pci_emul_init_fail;
}
success_cnt++;
}
}
/*
* Add some slop to the I/O and memory resources decoded by
* this bus to give a guest some flexibility if it wants to
* reprogram the BARs.
*/
pci_emul_iobase += BUSIO_ROUNDUP;
pci_emul_iobase = roundup2(pci_emul_iobase, BUSIO_ROUNDUP);
bi->iolimit = pci_emul_iobase;
pci_emul_membase32 += BUSMEM_ROUNDUP;
pci_emul_membase32 = roundup2(pci_emul_membase32,
BUSMEM_ROUNDUP);
bi->memlimit32 = pci_emul_membase32;
pci_emul_membase64 += BUSMEM_ROUNDUP;
pci_emul_membase64 = roundup2(pci_emul_membase64,
BUSMEM_ROUNDUP);
bi->memlimit64 = pci_emul_membase64;
}
/* TODO: gvt PCI bar0 and bar2 aren't allocated by ACRN DM,
* here, need update bus0 memlimit32 value.
* Currently, we only deal with bus0 memlimit32.
* If other PCI devices also use reserved regions,
* need to change these code.
*/
bi = pci_businfo[0];
bus0_memlimit = bi->memlimit32;
for(i = 0; i < REGION_NUMS; i++){
if(reserved_bar_regions[i].vdev &&
reserved_bar_regions[i].bar_type == PCIBAR_MEM32){
bus0_memlimit = (bus0_memlimit > (reserved_bar_regions[i].end + 1))
? bus0_memlimit : (reserved_bar_regions[i].end + 1);
}
}
bi->memlimit32 = bus0_memlimit;
error = check_gsi_sharing_violation();
if (error < 0)
goto pci_emul_init_fail;
/*
* PCI backends are initialized before routing INTx interrupts
* so that LPC devices are able to reserve ISA IRQs before
* routing PIRQ pins.
*/
for (bus = 0; bus < MAXBUSES; bus++) {
bi = pci_businfo[bus];
if (bi == NULL)
continue;
for (slot = 0; slot < MAXSLOTS; slot++) {
si = &bi->slotinfo[slot];
for (func = 0; func < MAXFUNCS; func++) {
fi = &si->si_funcs[func];
if (fi->fi_devi == NULL)
continue;
pci_lintr_route(fi->fi_devi);
ops = fi->fi_devi->dev_ops;
if (ops && ops->vdev_phys_access)
ops->vdev_phys_access(ctx,
fi->fi_devi);
}
}
}
lpc_pirq_routed();
/*
* The guest physical memory map looks like the following:
* [0, lowmem) guest system memory
* [lowmem, lowmem_limit) memory hole (may be absent)
* [lowmem_limit, 0xE0000000) PCI hole (32-bit BAR allocation)
* [0xE0000000, 0xF0000000) PCI extended config window
* [0xF0000000, 4GB) LAPIC, IOAPIC, HPET, firmware
* [4GB, 5GB) PCI hole (64-bit BAR allocation)
* [5GB, 5GB + highmem) guest system memory
*/
/*
* Accesses to memory addresses that are not allocated to system
* memory or PCI devices return 0xff's.
*/
bzero(&mr, sizeof(struct mem_range));
mr.name = "PCI hole (32-bit)";
mr.flags = MEM_F_RW;
mr.base = PCI_EMUL_MEMBASE32;
mr.size = PCI_EMUL_MEMLIMIT32 - PCI_EMUL_MEMBASE32;
mr.handler = pci_emul_fallback_handler;
error = register_mem_fallback(&mr);
if (error != 0)
goto pci_emul_init_fail;
/* ditto for the 64-bit PCI host aperture */
bzero(&mr, sizeof(struct mem_range));
mr.name = "PCI hole (64-bit)";
mr.flags = MEM_F_RW;
mr.base = PCI_EMUL_MEMBASE64;
mr.size = PCI_EMUL_MEMLIMIT64 - PCI_EMUL_MEMBASE64;
mr.handler = pci_emul_fallback_handler;
error = register_mem_fallback(&mr);
if (error != 0)
goto pci_emul_init_fail;
/* PCI extended config space */
bzero(&mr, sizeof(struct mem_range));
mr.name = "PCI ECFG";
mr.flags = MEM_F_RW;
mr.base = PCI_EMUL_ECFG_BASE;
mr.size = PCI_EMUL_ECFG_SIZE;
mr.handler = pci_emul_ecfg_handler;
error = register_mem(&mr);
if (error != 0)
goto pci_emul_init_fail;
return 0;
pci_emul_init_fail:
for (bus = 0; bus < MAXBUSES && success_cnt > 0; bus++) {
bi = pci_businfo[bus];
if (bi == NULL)
continue;
for (slot = 0; slot < MAXSLOTS && success_cnt > 0; slot++) {
si = &bi->slotinfo[slot];
for (func = 0; func < MAXFUNCS; func++) {
fi = &si->si_funcs[func];
if (fi->fi_name == NULL)
continue;
if (success_cnt-- <= 0)
break;
ops = pci_emul_finddev(fi->fi_name);
if (!ops) {
pr_warn("No driver for device [%s]\n", fi->fi_name);
continue;
}
pci_emul_deinit(ctx, ops, bus, slot,
func, fi);
}
}
}
return error;
}
void
deinit_pci(struct vmctx *ctx)
{
struct pci_vdev_ops *ops;
struct businfo *bi;
struct slotinfo *si;
struct funcinfo *fi;
int bus, slot, func;
struct mem_range mr;
/* Release PCI extended config space */
bzero(&mr, sizeof(struct mem_range));
mr.name = "PCI ECFG";
mr.base = PCI_EMUL_ECFG_BASE;
mr.size = PCI_EMUL_ECFG_SIZE;
unregister_mem(&mr);
/* Release PCI hole space */
bzero(&mr, sizeof(struct mem_range));
mr.name = "PCI hole (32-bit)";
mr.base = PCI_EMUL_MEMBASE32;
mr.size = PCI_EMUL_MEMLIMIT32 - PCI_EMUL_MEMBASE32;
unregister_mem_fallback(&mr);
/* ditto for the 64-bit PCI host aperture */
bzero(&mr, sizeof(struct mem_range));
mr.name = "PCI hole (64-bit)";
mr.base = PCI_EMUL_MEMBASE64;
mr.size = PCI_EMUL_MEMLIMIT64 - PCI_EMUL_MEMBASE64;
unregister_mem_fallback(&mr);
for (bus = 0; bus < MAXBUSES; bus++) {
bi = pci_businfo[bus];
if (bi == NULL)
continue;
for (slot = 0; slot < MAXSLOTS; slot++) {
si = &bi->slotinfo[slot];
for (func = 0; func < MAXFUNCS; func++) {
fi = &si->si_funcs[func];
if (fi->fi_name == NULL)
continue;
ops = pci_emul_finddev(fi->fi_name);
if (!ops) {
pr_warn("No driver for device [%s]\n", fi->fi_name);
continue;
}
pr_notice("pci deinit %s\n", fi->fi_name);
pci_emul_deinit(ctx, ops, bus, slot,
func, fi);
}
}
}
}
static void
pci_apic_prt_entry(int bus, int slot, int pin, int pirq_pin, int ioapic_irq,
void *arg)
{
dsdt_line(" Package ()");
dsdt_line(" {");
dsdt_line(" 0x%X,", slot << 16 | 0xffff);
dsdt_line(" 0x%02X,", pin - 1);
dsdt_line(" Zero,");
dsdt_line(" 0x%X", ioapic_irq);
dsdt_line(" },");
}
static void
pci_pirq_prt_entry(int bus, int slot, int pin, int pirq_pin, int ioapic_irq,
void *arg)
{
char *name;
name = lpc_pirq_name(pirq_pin);
if (name == NULL)
return;
dsdt_line(" Package ()");
dsdt_line(" {");
dsdt_line(" 0x%X,", slot << 16 | 0xffff);
dsdt_line(" 0x%02X,", pin - 1);
dsdt_line(" %s,", name);
dsdt_line(" 0x00");
dsdt_line(" },");
free(name);
}
/*
* A acrn-dm virtual machine has a flat PCI hierarchy with a root port
* corresponding to each PCI bus.
*/
static void
pci_bus_write_dsdt(int bus)
{
struct businfo *bi;
struct slotinfo *si;
struct pci_vdev *dev;
int count, func, slot;
/*
* If there are no devices on this 'bus' then just return.
*/
bi = pci_businfo[bus];
if (bi == NULL) {
/*
* Bus 0 is special because it decodes the I/O ports used
* for PCI config space access even if there are no devices
* on it.
*/
if (bus != 0)
return;
}
dsdt_line(" Device (PCI%01X)", bus);
dsdt_line(" {");
dsdt_line(" Name (_HID, EisaId (\"PNP0A03\"))");
dsdt_line(" Name (_ADR, Zero)");
dsdt_line(" Method (_BBN, 0, NotSerialized)");
dsdt_line(" {");
dsdt_line(" Return (0x%08X)", bus);
dsdt_line(" }");
dsdt_line(" Name (_CRS, ResourceTemplate ()");
dsdt_line(" {");
dsdt_line(" WordBusNumber (ResourceProducer, MinFixed, "
"MaxFixed, PosDecode,");
dsdt_line(" 0x0000, // Granularity");
dsdt_line(" 0x%04X, // Range Minimum", bus);
dsdt_line(" 0x%04X, // Range Maximum", bus);
dsdt_line(" 0x0000, // Translation Offset");
dsdt_line(" 0x0001, // Length");
dsdt_line(" ,, )");
if (bus == 0) {
dsdt_indent(3);
dsdt_fixed_ioport(0xCF8, 8);
dsdt_unindent(3);
dsdt_line(" WordIO (ResourceProducer, MinFixed, MaxFixed, "
"PosDecode, EntireRange,");
dsdt_line(" 0x0000, // Granularity");
dsdt_line(" 0x0000, // Range Minimum");
dsdt_line(" 0x0CF7, // Range Maximum");
dsdt_line(" 0x0000, // Translation Offset");
dsdt_line(" 0x0CF8, // Length");
dsdt_line(" ,, , TypeStatic)");
dsdt_line(" WordIO (ResourceProducer, MinFixed, MaxFixed, "
"PosDecode, EntireRange,");
dsdt_line(" 0x0000, // Granularity");
dsdt_line(" 0x0D00, // Range Minimum");
dsdt_line(" 0x%04X, // Range Maximum",
PCI_EMUL_IOBASE - 1);
dsdt_line(" 0x0000, // Translation Offset");
dsdt_line(" 0x%04X, // Length",
PCI_EMUL_IOBASE - 0x0D00);
dsdt_line(" ,, , TypeStatic)");
if (bi == NULL) {
dsdt_line(" })");
goto done;
}
}
/* i/o window */
dsdt_line(" WordIO (ResourceProducer, MinFixed, MaxFixed, "
"PosDecode, EntireRange,");
dsdt_line(" 0x0000, // Granularity");
dsdt_line(" 0x%04X, // Range Minimum", bi->iobase);
dsdt_line(" 0x%04X, // Range Maximum",
bi->iolimit - 1);
dsdt_line(" 0x0000, // Translation Offset");
dsdt_line(" 0x%04X, // Length",
bi->iolimit - bi->iobase);
dsdt_line(" ,, , TypeStatic)");
/* mmio window (32-bit) */
dsdt_line(" DWordMemory (ResourceProducer, PosDecode, "
"MinFixed, MaxFixed, NonCacheable, ReadWrite,");
dsdt_line(" 0x00000000, // Granularity");
dsdt_line(" 0x%08X, // Range Minimum\n", PCI_EMUL_MEMBASE32);
dsdt_line(" 0x%08X, // Range Maximum\n",
PCI_EMUL_MEMLIMIT32 - 1);
dsdt_line(" 0x00000000, // Translation Offset");
dsdt_line(" 0x%08X, // Length\n",
PCI_EMUL_MEMLIMIT32 - PCI_EMUL_MEMBASE32);
dsdt_line(" ,, , AddressRangeMemory, TypeStatic)");
/* mmio window (64-bit) */
dsdt_line(" QWordMemory (ResourceProducer, PosDecode, "
"MinFixed, MaxFixed, NonCacheable, ReadWrite,");
dsdt_line(" 0x0000000000000000, // Granularity");
dsdt_line(" 0x%016lX, // Range Minimum\n", PCI_EMUL_MEMBASE64);
dsdt_line(" 0x%016lX, // Range Maximum\n",
PCI_EMUL_MEMLIMIT64 - 1);
dsdt_line(" 0x0000000000000000, // Translation Offset");
dsdt_line(" 0x%016lX, // Length\n",
PCI_EMUL_MEMLIMIT64 - PCI_EMUL_MEMBASE64);
dsdt_line(" ,, , AddressRangeMemory, TypeStatic)");
dsdt_line(" })");
if (!is_rtvm) {
count = pci_count_lintr(bus);
if (count != 0) {
dsdt_indent(2);
dsdt_line("Name (PPRT, Package ()");
dsdt_line("{");
pci_walk_lintr(bus, pci_pirq_prt_entry, NULL);
dsdt_line("})");
dsdt_line("Name (APRT, Package ()");
dsdt_line("{");
pci_walk_lintr(bus, pci_apic_prt_entry, NULL);
dsdt_line("})");
dsdt_line("Method (_PRT, 0, NotSerialized)");
dsdt_line("{");
dsdt_line(" If (PICM)");
dsdt_line(" {");
dsdt_line(" Return (APRT)");
dsdt_line(" }");
dsdt_line(" Else");
dsdt_line(" {");
dsdt_line(" Return (PPRT)");
dsdt_line(" }");
dsdt_line("}");
dsdt_unindent(2);
}
}
dsdt_indent(2);
for (slot = 0; slot < MAXSLOTS; slot++) {
si = &bi->slotinfo[slot];
for (func = 0; func < MAXFUNCS; func++) {
dev = si->si_funcs[func].fi_devi;
if (dev != NULL &&
dev->dev_ops->vdev_write_dsdt != NULL)
dev->dev_ops->vdev_write_dsdt(dev);
}
}
dsdt_unindent(2);
done:
dsdt_line(" }");
}
void
pci_write_dsdt(void)
{
int bus;
dsdt_indent(1);
dsdt_line("Name (PICM, 0x00)");
dsdt_line("Method (_PIC, 1, NotSerialized)");
dsdt_line("{");
dsdt_line(" Store (Arg0, PICM)");
dsdt_line("}");
dsdt_line("");
dsdt_line("Scope (_SB)");
dsdt_line("{");
for (bus = 0; bus < MAXBUSES; bus++)
pci_bus_write_dsdt(bus);
dsdt_line("}");
dsdt_unindent(1);
}
int
pci_bus_configured(int bus)
{
return (pci_businfo[bus] != NULL);
}
int
pci_msi_enabled(struct pci_vdev *dev)
{
return dev->msi.enabled;
}
int
pci_msi_maxmsgnum(struct pci_vdev *dev)
{
if (dev->msi.enabled)
return dev->msi.maxmsgnum;
else
return 0;
}
int
pci_msix_enabled(struct pci_vdev *dev)
{
return (dev->msix.enabled && !dev->msi.enabled);
}
/**
* @brief Generate a MSI-X interrupt to guest
*
* @param dev Pointer to struct pci_vdev representing virtual PCI device.
* @param index MSIx table entry index.
*
* @return None
*/
void
pci_generate_msix(struct pci_vdev *dev, int index)
{
struct msix_table_entry *mte;
if (!pci_msix_enabled(dev))
return;
if (dev->msix.function_mask)
return;
if (index >= dev->msix.table_count)
return;
mte = &dev->msix.table[index];
if ((mte->vector_control & PCIM_MSIX_VCTRL_MASK) == 0) {
/* XXX Set PBA bit if interrupt is disabled */
vm_lapic_msi(dev->vmctx, mte->addr, mte->msg_data);
}
}
/**
* @brief Generate a MSI interrupt to guest
*
* @param dev Pointer to struct pci_vdev representing virtual PCI device.
* @param index Message data index.
*
* @return None
*/
void
pci_generate_msi(struct pci_vdev *dev, int index)
{
if (pci_msi_enabled(dev) && index < pci_msi_maxmsgnum(dev)) {
vm_lapic_msi(dev->vmctx, dev->msi.addr,
dev->msi.msg_data + index);
}
}
static bool
pci_lintr_permitted(struct pci_vdev *dev)
{
uint16_t cmd;
cmd = pci_get_cfgdata16(dev, PCIR_COMMAND);
return (!(dev->msi.enabled || dev->msix.enabled ||
(cmd & PCIM_CMD_INTxDIS)));
}
void
pci_lintr_request(struct pci_vdev *dev)
{
struct businfo *bi;
struct slotinfo *si;
int bestpin, bestcount, pin;
bi = pci_businfo[dev->bus];
if (bi == NULL) {
pr_err("%s: pci [%s] has wrong bus %d info!\n", __func__, dev->name, dev->bus);
return;
}
/*
* Just allocate a pin from our slot. The pin will be
* assigned IRQs later when interrupts are routed.
*/
si = &bi->slotinfo[dev->slot];
bestpin = 0;
bestcount = si->si_intpins[0].ii_count;
for (pin = 1; pin < 4; pin++) {
if (si->si_intpins[pin].ii_count < bestcount) {
bestpin = pin;
bestcount = si->si_intpins[pin].ii_count;
}
}
si->si_intpins[bestpin].ii_count++;
dev->lintr.pin = bestpin + 1;
pci_set_cfgdata8(dev, PCIR_INTPIN, bestpin + 1);
}
void
pci_lintr_release(struct pci_vdev *dev)
{
struct businfo *bi;
struct slotinfo *si;
int pin;
bi = pci_businfo[dev->bus];
if (bi == NULL) {
pr_err("%s: pci [%s] has wrong bus %d info!\n", __func__, dev->name, dev->bus);
return;
}
si = &bi->slotinfo[dev->slot];
for (pin = 1; pin < 4; pin++) {
si->si_intpins[pin].ii_count = 0;
si->si_intpins[pin].ii_pirq_pin = 0;
si->si_intpins[pin].ii_ioapic_irq = 0;
}
}
static void
pci_lintr_route(struct pci_vdev *dev)
{
struct businfo *bi;
struct intxinfo *ii;
if (dev->lintr.pin == 0)
return;
bi = pci_businfo[dev->bus];
if (bi == NULL) {
pr_err("%s: pci [%s] has wrong bus %d info!\n", __func__, dev->name, dev->bus);
return;
}
ii = &bi->slotinfo[dev->slot].si_intpins[dev->lintr.pin - 1];
/*
* Attempt to allocate an I/O APIC pin for this intpin if one
* is not yet assigned.
*/
if (ii->ii_ioapic_irq == 0)
ii->ii_ioapic_irq = ioapic_pci_alloc_irq(dev);
/*
* Attempt to allocate a PIRQ pin for this intpin if one is
* not yet assigned.
*/
if (ii->ii_pirq_pin == 0)
ii->ii_pirq_pin = pirq_alloc_pin(dev);
dev->lintr.ioapic_irq = ii->ii_ioapic_irq;
dev->lintr.pirq_pin = ii->ii_pirq_pin;
pci_set_cfgdata8(dev, PCIR_INTLINE, pirq_irq(ii->ii_pirq_pin));
}
/**
* @brief Assert INTx pin of virtual PCI device
*
* @param dev Pointer to struct pci_vdev representing virtual PCI device.
*
* @return None
*/
void
pci_lintr_assert(struct pci_vdev *dev)
{
if (dev->lintr.pin <= 0) {
pr_warn("%s: Invalid intr pin on dev [%s]\n", __func__, dev->name);
return;
}
pthread_mutex_lock(&dev->lintr.lock);
if (dev->lintr.state == IDLE) {
if (pci_lintr_permitted(dev)) {
dev->lintr.state = ASSERTED;
pci_irq_assert(dev);
} else
dev->lintr.state = PENDING;
}
pthread_mutex_unlock(&dev->lintr.lock);
}
/**
* @brief Deassert INTx pin of virtual PCI device
*
* @param dev Pointer to struct pci_vdev representing virtual PCI device.
*
* @return None
*/
void
pci_lintr_deassert(struct pci_vdev *dev)
{
if (dev->lintr.pin <= 0) {
pr_warn("%s: Invalid intr pin on dev [%s]\n", __func__, dev->name);
return;
}
pthread_mutex_lock(&dev->lintr.lock);
if (dev->lintr.state == ASSERTED) {
dev->lintr.state = IDLE;
pci_irq_deassert(dev);
} else if (dev->lintr.state == PENDING)
dev->lintr.state = IDLE;
pthread_mutex_unlock(&dev->lintr.lock);
}
static void
pci_lintr_update(struct pci_vdev *dev)
{
pthread_mutex_lock(&dev->lintr.lock);
if (dev->lintr.state == ASSERTED && !pci_lintr_permitted(dev)) {
pci_irq_deassert(dev);
dev->lintr.state = PENDING;
} else if (dev->lintr.state == PENDING && pci_lintr_permitted(dev)) {
dev->lintr.state = ASSERTED;
pci_irq_assert(dev);
}
pthread_mutex_unlock(&dev->lintr.lock);
}
int
pci_count_lintr(int bus)
{
int count, slot, pin;
struct slotinfo *slotinfo;
count = 0;
if (pci_businfo[bus] != NULL) {
for (slot = 0; slot < MAXSLOTS; slot++) {
slotinfo = &pci_businfo[bus]->slotinfo[slot];
for (pin = 0; pin < 4; pin++) {
if (slotinfo->si_intpins[pin].ii_count != 0)
count++;
}
}
}
return count;
}
void
pci_walk_lintr(int bus, pci_lintr_cb cb, void *arg)
{
struct businfo *bi;
struct slotinfo *si;
struct intxinfo *ii;
int slot, pin;
bi = pci_businfo[bus];
if (bi == NULL)
return;
for (slot = 0; slot < MAXSLOTS; slot++) {
si = &bi->slotinfo[slot];
for (pin = 0; pin < 4; pin++) {
ii = &si->si_intpins[pin];
if (ii->ii_count != 0)
cb(bus, slot, pin + 1, ii->ii_pirq_pin,
ii->ii_ioapic_irq, arg);
}
}
}
/*
* Return 1 if the emulated device in 'slot' is a multi-function device.
* Return 0 otherwise.
*/
static int
pci_emul_is_mfdev(int bus, int slot)
{
struct businfo *bi;
struct slotinfo *si;
int f, numfuncs;
numfuncs = 0;
bi = pci_businfo[bus];
if (bi != NULL) {
si = &bi->slotinfo[slot];
for (f = 0; f < MAXFUNCS; f++) {
if (si->si_funcs[f].fi_devi != NULL)
numfuncs++;
}
}
return (numfuncs > 1);
}
/*
* Ensure that the PCIM_MFDEV bit is properly set (or unset) depending on
* whether or not is a multi-function being emulated in the pci 'slot'.
*/
static void
pci_emul_hdrtype_fixup(int bus, int slot, int off, int bytes, uint32_t *rv)
{
int mfdev;
if (off <= PCIR_HDRTYPE && off + bytes > PCIR_HDRTYPE) {
mfdev = pci_emul_is_mfdev(bus, slot);
switch (bytes) {
case 1:
case 2:
*rv &= ~PCIM_MFDEV;
if (mfdev)
*rv |= PCIM_MFDEV;
break;
case 4:
*rv &= ~(PCIM_MFDEV << 16);
if (mfdev)
*rv |= (PCIM_MFDEV << 16);
break;
}
}
}
static void
pci_emul_cmdsts_write(struct pci_vdev *dev, int coff, uint32_t new, int bytes)
{
int i, rshift;
uint32_t cmd, cmd2, changed, old, readonly;
cmd = pci_get_cfgdata16(dev, PCIR_COMMAND); /* stash old value */
/*
* From PCI Local Bus Specification 3.0 sections 6.2.2 and 6.2.3.
*
* XXX Bits 8, 11, 12, 13, 14 and 15 in the status register are
* 'write 1 to clear'. However these bits are not set to '1' by
* any device emulation so it is simpler to treat them as readonly.
*/
rshift = (coff & 0x3) * 8;
readonly = 0xFFFFF880 >> rshift;
old = CFGREAD(dev, coff, bytes);
new &= ~readonly;
new |= (old & readonly);
CFGWRITE(dev, coff, new, bytes); /* update config */
cmd2 = pci_get_cfgdata16(dev, PCIR_COMMAND); /* get updated value */
changed = cmd ^ cmd2;
/*
* If the MMIO or I/O address space decoding has changed then
* register/unregister all BARs that decode that address space.
*/
for (i = 0; i <= PCI_BARMAX; i++) {
switch (dev->bar[i].type) {
case PCIBAR_NONE:
case PCIBAR_MEMHI64:
break;
case PCIBAR_IO:
/* I/O address space decoding changed? */
if (changed & PCIM_CMD_PORTEN) {
if (porten(dev))
register_bar(dev, i);
else
unregister_bar(dev, i);
}
break;
case PCIBAR_MEM32:
case PCIBAR_MEM64:
/* MMIO address space decoding changed? */
if (changed & PCIM_CMD_MEMEN) {
if (memen(dev))
register_bar(dev, i);
else
unregister_bar(dev, i);
}
break;
default:
pr_err("%s: invalid bar type %d\n", __func__, dev->bar[i].type);
return;
}
}
/*
* If INTx has been unmasked and is pending, assert the
* interrupt.
*/
pci_lintr_update(dev);
}
static void
pci_cfgrw(struct vmctx *ctx, int vcpu, int in, int bus, int slot, int func,
int coff, int bytes, uint32_t *eax)
{
struct businfo *bi;
struct slotinfo *si;
struct pci_vdev *dev;
struct pci_vdev_ops *ops;
int idx, needcfg;
uint64_t addr, bar, mask;
bool decode, ignore_reg_unreg = false;
uint8_t mmio_bar_prop;
bi = pci_businfo[bus];
if (bi != NULL) {
si = &bi->slotinfo[slot];
dev = si->si_funcs[func].fi_devi;
} else
dev = NULL;
/*
* Just return if there is no device at this slot:func or if the
* the guest is doing an un-aligned access.
*/
if (dev == NULL || (bytes != 1 && bytes != 2 && bytes != 4) ||
(coff & (bytes - 1)) != 0) {
if (in)
*eax = 0xffffffff;
return;
}
ops = dev->dev_ops;
/*
* For non-passthru device, extended config space is NOT supported.
* Ignore all writes beyond the standard config space and return all
* ones on reads.
*
* For passthru device, extended config space is supported.
* Access to extended config space is implemented via libpciaccess.
*/
if (strcmp("passthru", ops->class_name)) {
if (coff >= PCI_REGMAX + 1) {
if (in) {
*eax = 0xffffffff;
/*
* Extended capabilities begin at offset 256 in
* config space.
* Absence of extended capabilities is signaled
* with all 0s in the extended capability header
* at offset 256.
*/
if (coff <= PCI_REGMAX + 4)
*eax = 0x00000000;
}
return;
}
}
/*
* Config read
*/
if (in) {
/* Let the device emulation override the default handler */
if (ops->vdev_cfgread != NULL) {
needcfg = ops->vdev_cfgread(ctx, vcpu, dev, coff, bytes,
eax);
} else {
needcfg = 1;
}
if (needcfg)
*eax = CFGREAD(dev, coff, bytes);
pci_emul_hdrtype_fixup(bus, slot, coff, bytes, eax);
} else {
/* Let the device emulation override the default handler */
if (ops->vdev_cfgwrite != NULL &&
(*ops->vdev_cfgwrite)(ctx, vcpu, dev,
coff, bytes, *eax) == 0)
return;
/*
* Special handling for write to BAR registers
*/
if (coff >= PCIR_BAR(0) && coff < PCIR_BAR(PCI_BARMAX + 1)) {
/*
* Ignore writes to BAR registers that are not
* 4-byte aligned.
*/
if (bytes != 4 || (coff & 0x3) != 0)
return;
idx = (coff - PCIR_BAR(0)) / 4;
mask = ~(dev->bar[idx].size - 1);
if (dev->bar[idx].type == PCIBAR_IO)
decode = porten(dev);
else
decode = memen(dev);
/* Some driver does not disable the decode of BAR
* register via the command register before sizing a
* BAR. This will lead to a overlay of the BAR
* addresses when trying to register the intermediate
* BAR address via register_bar. A stateful variable
* sizing is used to keep track of such kind of BAR
* address changes and workaroud this violation.
*/
if (decode) {
if (!dev->bar[idx].sizing && (*eax == ~0U)) {
dev->bar[idx].sizing = true;
ignore_reg_unreg = true;
} else if (dev->bar[idx].sizing && (*eax != ~0U)) {
dev->bar[idx].sizing = false;
ignore_reg_unreg = true;
}
}
/* save the bar property for MMIO pci bar. */
mmio_bar_prop = pci_get_cfgdata32(dev, PCIR_BAR(idx)) &
(PCIM_BAR_SPACE | PCIM_BAR_MEM_TYPE |
PCIM_BAR_MEM_PREFETCH);
switch (dev->bar[idx].type) {
case PCIBAR_NONE:
dev->bar[idx].addr = bar = 0;
break;
case PCIBAR_IO:
addr = *eax & mask;
addr &= 0xffff;
bar = addr | PCIM_BAR_IO_SPACE;
/*
* Register the new BAR value for interception
*/
if (addr != dev->bar[idx].addr) {
update_bar_address(ctx, dev, addr, idx,
PCIBAR_IO,
ignore_reg_unreg);
}
break;
case PCIBAR_MEM32:
addr = bar = *eax & mask;
/* Restore the readonly fields for mmio bar */
bar |= mmio_bar_prop;
if (addr != dev->bar[idx].addr) {
update_bar_address(ctx, dev, addr, idx,
PCIBAR_MEM32,
ignore_reg_unreg);
}
break;
case PCIBAR_MEM64:
addr = bar = *eax & mask;
/* Restore the readonly fields for mmio bar */
bar |= mmio_bar_prop;
if (addr != (uint32_t)dev->bar[idx].addr) {
update_bar_address(ctx, dev, addr, idx,
PCIBAR_MEM64,
ignore_reg_unreg);
}
break;
case PCIBAR_MEMHI64:
mask = ~(dev->bar[idx - 1].size - 1);
addr = ((uint64_t)*eax << 32) & mask;
bar = addr >> 32;
if (bar != dev->bar[idx - 1].addr >> 32) {
update_bar_address(ctx, dev, addr, idx - 1,
PCIBAR_MEMHI64,
ignore_reg_unreg);
}
break;
default:
pr_err("%s: invalid bar type %d\n", __func__, dev->bar[idx].type);
return;
}
pci_set_cfgdata32(dev, coff, bar);
} else if (coff == PCIR_BIOS) {
/* ignore ROM BAR length request */
} else if (pci_emul_iscap(dev, coff)) {
pci_emul_capwrite(dev, coff, bytes, *eax);
} else if (coff >= PCIR_COMMAND && coff < PCIR_REVID) {
pci_emul_cmdsts_write(dev, coff, *eax, bytes);
} else {
CFGWRITE(dev, coff, *eax, bytes);
}
}
}
int
emulate_pci_cfgrw(struct vmctx *ctx, int vcpu, int in, int bus, int slot,
int func, int reg, int bytes, int *value)
{
pci_cfgrw(ctx, vcpu, in, bus, slot, func, reg,
bytes, (uint32_t *)value);
return 0;
}
#define PCI_EMUL_TEST
#ifdef PCI_EMUL_TEST
/*
* Define a dummy test device
*/
#define DIOSZ 8
#define DMEMSZ 4096
struct pci_emul_dummy {
uint8_t ioregs[DIOSZ];
uint8_t memregs[2][DMEMSZ];
};
#define PCI_EMUL_MSI_MSGS 4
#define PCI_EMUL_MSIX_MSGS 16
static int
pci_emul_dinit(struct vmctx *ctx, struct pci_vdev *dev, char *opts)
{
struct pci_emul_dummy *dummy;
dummy = calloc(1, sizeof(struct pci_emul_dummy));
dev->arg = dummy;
pci_set_cfgdata16(dev, PCIR_DEVICE, 0x0001);
pci_set_cfgdata16(dev, PCIR_VENDOR, 0x10DD);
pci_set_cfgdata8(dev, PCIR_CLASS, 0x02);
return pci_emul_add_msicap(dev, PCI_EMUL_MSI_MSGS) ||
pci_emul_alloc_bar(dev, 0, PCIBAR_IO, DIOSZ) ||
pci_emul_alloc_bar(dev, 1, PCIBAR_MEM32, DMEMSZ) ||
pci_emul_alloc_bar(dev, 2, PCIBAR_MEM32, DMEMSZ);
}
static void
pci_emul_diow(struct vmctx *ctx, int vcpu, struct pci_vdev *dev, int baridx,
uint64_t offset, int size, uint64_t value)
{
int i;
void *offset_ptr;
struct pci_emul_dummy *dummy = dev->arg;
if (baridx == 0) {
if (offset + size > DIOSZ) {
pr_err("diow: iow too large, offset %ld size %d\n",
offset, size);
return;
}
offset_ptr = (void *) &dummy->ioregs[offset];
if (size == 1)
*(uint8_t *)offset_ptr = value & 0xff;
else if (size == 2)
*(uint16_t *)offset_ptr = value & 0xffff;
else if (size == 4)
*(uint32_t *)offset = value;
else
pr_err("diow: iow unknown size %d\n", size);
/*
* Special magic value to generate an interrupt
*/
if (offset == 4 && size == 4 && pci_msi_enabled(dev))
pci_generate_msi(dev, value % pci_msi_maxmsgnum(dev));
if (value == 0xabcdef) {
for (i = 0; i < pci_msi_maxmsgnum(dev); i++)
pci_generate_msi(dev, i);
}
}
if (baridx == 1 || baridx == 2) {
if (offset + size > DMEMSZ) {
pr_err("diow: memw too large, offset %ld size %d\n",
offset, size);
return;
}
i = baridx - 1; /* 'memregs' index */
offset_ptr = (void *) &dummy->memregs[i][offset];
if (size == 1)
*(uint8_t *)offset_ptr = value;
else if (size == 2)
*(uint16_t *)offset_ptr = value;
else if (size == 4)
*(uint32_t *)offset_ptr = value;
else if (size == 8)
*(uint64_t *)offset_ptr = value;
else
pr_err("diow: memw unknown size %d\n", size);
/*
* magic interrupt ??
*/
}
if (baridx > 2 || baridx < 0)
pr_err("diow: unknown bar idx %d\n", baridx);
}
static uint64_t
pci_emul_dior(struct vmctx *ctx, int vcpu, struct pci_vdev *dev, int baridx,
uint64_t offset, int size)
{
struct pci_emul_dummy *dummy = dev->arg;
uint32_t value = 0;
int i;
void *offset_ptr;
if (baridx == 0) {
if (offset + size > DIOSZ) {
pr_err("dior: ior too large, offset %ld size %d\n",
offset, size);
return 0;
}
value = 0;
offset_ptr = (void *) &dummy->ioregs[offset];
if (size == 1)
value = *(uint8_t *)offset_ptr;
else if (size == 2)
value = *(uint16_t *)offset_ptr;
else if (size == 4)
value = *(uint32_t *)offset_ptr;
else
pr_err("dior: ior unknown size %d\n", size);
}
if (baridx == 1 || baridx == 2) {
if (offset + size > DMEMSZ) {
pr_err("dior: memr too large, offset %ld size %d\n",
offset, size);
return 0;
}
i = baridx - 1; /* 'memregs' index */
offset_ptr = (void *) &dummy->memregs[i][offset];
if (size == 1)
value = *(uint8_t *)offset_ptr;
else if (size == 2)
value = *(uint16_t *)offset_ptr;
else if (size == 4)
value = *(uint32_t *)offset_ptr;
else if (size == 8)
value = *(uint64_t *)offset_ptr;
else
pr_err("dior: ior unknown size %d\n", size);
}
if (baridx > 2 || baridx < 0) {
pr_err("dior: unknown bar idx %d\n", baridx);
return 0;
}
return value;
}
struct pci_vdev*
pci_get_vdev_info(int slot)
{
struct businfo *bi;
struct slotinfo *si;
struct pci_vdev *dev = NULL;
bi = pci_businfo[0];
if (bi == NULL)
return NULL;
if (slot < 0 || slot >= MAXSLOTS)
return NULL;
si = &bi->slotinfo[slot];
if (si != NULL)
dev = si->si_funcs[0].fi_devi;
else
pr_err("slot=%d is empty!\n", slot);
return dev;
}
struct pci_vdev_ops pci_dummy = {
.class_name = "dummy",
.vdev_init = pci_emul_dinit,
.vdev_barwrite = pci_emul_diow,
.vdev_barread = pci_emul_dior
};
DEFINE_PCI_DEVTYPE(pci_dummy);
#endif /* PCI_EMUL_TEST */