acrn-hypervisor/hypervisor/arch/x86/guest/vcpu.c
Shuo A Liu 8e74c2cfd5 hv: vcpu: wait and signal vcpu event support
Introduce two kinds of events for each vcpu,
  VCPU_EVENT_IOREQ: for vcpu waiting for IO request completion
  VCPU_EVENT_VIRTUAL_INTERRUPT: for vcpu waiting for virtual interrupts events
vcpu can wait for such events, and resume to run when the
event get signalled.

This patch also change IO request waiting/notifying to this way.

Tracked-On: #4329
Signed-off-by: Shuo A Liu <shuo.a.liu@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
2020-01-23 13:37:53 +08:00

863 lines
22 KiB
C

/*
* Copyright (C) 2018 Intel Corporation. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <types.h>
#include <errno.h>
#include <vcpu.h>
#include <bits.h>
#include <vmx.h>
#include <logmsg.h>
#include <cpu_caps.h>
#include <per_cpu.h>
#include <init.h>
#include <vm.h>
#include <vmcs.h>
#include <mmu.h>
#include <sprintf.h>
/* stack_frame is linked with the sequence of stack operation in arch_switch_to() */
struct stack_frame {
uint64_t rdi;
uint64_t r15;
uint64_t r14;
uint64_t r13;
uint64_t r12;
uint64_t rbp;
uint64_t rbx;
uint64_t rflag;
uint64_t rip;
uint64_t magic;
};
uint64_t vcpu_get_gpreg(const struct acrn_vcpu *vcpu, uint32_t reg)
{
const struct run_context *ctx =
&vcpu->arch.contexts[vcpu->arch.cur_context].run_ctx;
return ctx->cpu_regs.longs[reg];
}
void vcpu_set_gpreg(struct acrn_vcpu *vcpu, uint32_t reg, uint64_t val)
{
struct run_context *ctx =
&vcpu->arch.contexts[vcpu->arch.cur_context].run_ctx;
ctx->cpu_regs.longs[reg] = val;
}
uint64_t vcpu_get_rip(struct acrn_vcpu *vcpu)
{
struct run_context *ctx =
&vcpu->arch.contexts[vcpu->arch.cur_context].run_ctx;
if (!bitmap_test(CPU_REG_RIP, &vcpu->reg_updated) &&
!bitmap_test_and_set_lock(CPU_REG_RIP, &vcpu->reg_cached)) {
ctx->rip = exec_vmread(VMX_GUEST_RIP);
}
return ctx->rip;
}
void vcpu_set_rip(struct acrn_vcpu *vcpu, uint64_t val)
{
vcpu->arch.contexts[vcpu->arch.cur_context].run_ctx.rip = val;
bitmap_set_lock(CPU_REG_RIP, &vcpu->reg_updated);
}
uint64_t vcpu_get_rsp(const struct acrn_vcpu *vcpu)
{
const struct run_context *ctx =
&vcpu->arch.contexts[vcpu->arch.cur_context].run_ctx;
return ctx->cpu_regs.regs.rsp;
}
void vcpu_set_rsp(struct acrn_vcpu *vcpu, uint64_t val)
{
struct run_context *ctx =
&vcpu->arch.contexts[vcpu->arch.cur_context].run_ctx;
ctx->cpu_regs.regs.rsp = val;
bitmap_set_lock(CPU_REG_RSP, &vcpu->reg_updated);
}
uint64_t vcpu_get_efer(struct acrn_vcpu *vcpu)
{
struct run_context *ctx =
&vcpu->arch.contexts[vcpu->arch.cur_context].run_ctx;
if (!bitmap_test(CPU_REG_EFER, &vcpu->reg_updated) &&
!bitmap_test_and_set_lock(CPU_REG_EFER, &vcpu->reg_cached)) {
ctx->ia32_efer = exec_vmread64(VMX_GUEST_IA32_EFER_FULL);
}
return ctx->ia32_efer;
}
void vcpu_set_efer(struct acrn_vcpu *vcpu, uint64_t val)
{
vcpu->arch.contexts[vcpu->arch.cur_context].run_ctx.ia32_efer
= val;
bitmap_set_lock(CPU_REG_EFER, &vcpu->reg_updated);
}
uint64_t vcpu_get_rflags(struct acrn_vcpu *vcpu)
{
struct run_context *ctx =
&vcpu->arch.contexts[vcpu->arch.cur_context].run_ctx;
if (!bitmap_test(CPU_REG_RFLAGS, &vcpu->reg_updated) &&
!bitmap_test_and_set_lock(CPU_REG_RFLAGS,
&vcpu->reg_cached) && vcpu->launched) {
ctx->rflags = exec_vmread(VMX_GUEST_RFLAGS);
}
return ctx->rflags;
}
void vcpu_set_rflags(struct acrn_vcpu *vcpu, uint64_t val)
{
vcpu->arch.contexts[vcpu->arch.cur_context].run_ctx.rflags =
val;
bitmap_set_lock(CPU_REG_RFLAGS, &vcpu->reg_updated);
}
uint64_t vcpu_get_guest_msr(const struct acrn_vcpu *vcpu, uint32_t msr)
{
uint32_t index = vmsr_get_guest_msr_index(msr);
uint64_t val = 0UL;
if (index < NUM_GUEST_MSRS) {
val = vcpu->arch.guest_msrs[index];
}
return val;
}
void vcpu_set_guest_msr(struct acrn_vcpu *vcpu, uint32_t msr, uint64_t val)
{
uint32_t index = vmsr_get_guest_msr_index(msr);
if (index < NUM_GUEST_MSRS) {
vcpu->arch.guest_msrs[index] = val;
}
}
/*
* Write the eoi_exit_bitmaps to VMCS fields
*/
void vcpu_set_vmcs_eoi_exit(const struct acrn_vcpu *vcpu)
{
pr_dbg("%s", __func__);
if (is_apicv_advanced_feature_supported()) {
exec_vmwrite64(VMX_EOI_EXIT0_FULL, vcpu->arch.eoi_exit_bitmap[0]);
exec_vmwrite64(VMX_EOI_EXIT1_FULL, vcpu->arch.eoi_exit_bitmap[1]);
exec_vmwrite64(VMX_EOI_EXIT2_FULL, vcpu->arch.eoi_exit_bitmap[2]);
exec_vmwrite64(VMX_EOI_EXIT3_FULL, vcpu->arch.eoi_exit_bitmap[3]);
}
}
/*
* Set the eoi_exit_bitmap bit for specific vector
* @pre vcpu != NULL && vector <= 255U
*/
void vcpu_set_eoi_exit_bitmap(struct acrn_vcpu *vcpu, uint32_t vector)
{
pr_dbg("%s", __func__);
if (!bitmap_test_and_set_lock((uint16_t)(vector & 0x3fU),
&(vcpu->arch.eoi_exit_bitmap[(vector & 0xffU) >> 6U]))) {
vcpu_make_request(vcpu, ACRN_REQUEST_EOI_EXIT_BITMAP_UPDATE);
}
}
void vcpu_clear_eoi_exit_bitmap(struct acrn_vcpu *vcpu, uint32_t vector)
{
pr_dbg("%s", __func__);
if (bitmap_test_and_clear_lock((uint16_t)(vector & 0x3fU),
&(vcpu->arch.eoi_exit_bitmap[(vector & 0xffU) >> 6U]))) {
vcpu_make_request(vcpu, ACRN_REQUEST_EOI_EXIT_BITMAP_UPDATE);
}
}
/*
* Reset all eoi_exit_bitmaps
*/
void vcpu_reset_eoi_exit_bitmaps(struct acrn_vcpu *vcpu)
{
pr_dbg("%s", __func__);
(void)memset((void *)(vcpu->arch.eoi_exit_bitmap), 0U, sizeof(vcpu->arch.eoi_exit_bitmap));
vcpu_make_request(vcpu, ACRN_REQUEST_EOI_EXIT_BITMAP_UPDATE);
}
struct acrn_vcpu *get_running_vcpu(uint16_t pcpu_id)
{
struct thread_object *curr = sched_get_current(pcpu_id);
struct acrn_vcpu *vcpu = NULL;
if ((curr != NULL) && (!is_idle_thread(curr))) {
vcpu = list_entry(curr, struct acrn_vcpu, thread_obj);
}
return vcpu;
}
struct acrn_vcpu *get_ever_run_vcpu(uint16_t pcpu_id)
{
return per_cpu(ever_run_vcpu, pcpu_id);
}
static void set_vcpu_mode(struct acrn_vcpu *vcpu, uint32_t cs_attr, uint64_t ia32_efer,
uint64_t cr0)
{
if ((ia32_efer & MSR_IA32_EFER_LMA_BIT) != 0UL) {
if ((cs_attr & 0x2000U) != 0U) {
/* CS.L = 1 */
vcpu->arch.cpu_mode = CPU_MODE_64BIT;
} else {
vcpu->arch.cpu_mode = CPU_MODE_COMPATIBILITY;
}
} else if ((cr0 & CR0_PE) != 0UL) {
vcpu->arch.cpu_mode = CPU_MODE_PROTECTED;
} else {
vcpu->arch.cpu_mode = CPU_MODE_REAL;
}
}
static void init_xsave(struct acrn_vcpu *vcpu)
{
struct cpuinfo_x86 *cpu_info = get_pcpu_info();
struct ext_context *ectx = &(vcpu->arch.contexts[vcpu->arch.cur_context].ext_ctx);
/* Get user state components */
ectx->xcr0 = ((uint64_t)cpu_info->cpuid_leaves[FEAT_D_0_EDX] << 32U)
+ cpu_info->cpuid_leaves[FEAT_D_0_EAX];
/* Get supervisor state components */
ectx->xss = ((uint64_t)cpu_info->cpuid_leaves[FEAT_D_1_EDX] << 32U)
+ cpu_info->cpuid_leaves[FEAT_D_1_ECX];
/* xsaves only support compacted format, so set it in xcomp_bv[63],
* keep the reset area in header area as zero.
* With this config, the first time a vcpu is scheduled in, it will
* initiate all the xsave componets */
ectx->xs_area.xsave_hdr.hdr.xcomp_bv |= XSAVE_COMPACTED_FORMAT;
}
void set_vcpu_regs(struct acrn_vcpu *vcpu, struct acrn_vcpu_regs *vcpu_regs)
{
struct ext_context *ectx;
struct run_context *ctx;
uint16_t *sel = &(vcpu_regs->cs_sel);
struct segment_sel *seg;
uint32_t limit, attr;
ectx = &(vcpu->arch.contexts[vcpu->arch.cur_context].ext_ctx);
ctx = &(vcpu->arch.contexts[vcpu->arch.cur_context].run_ctx);
/* NOTE:
* This is to set the attr and limit to default value.
* If the set_vcpu_regs is used not only for vcpu state
* initialization, this part of code needs be revised.
*/
if ((vcpu_regs->cr0 & CR0_PE) != 0UL) {
attr = PROTECTED_MODE_DATA_SEG_AR;
limit = PROTECTED_MODE_SEG_LIMIT;
} else {
attr = REAL_MODE_DATA_SEG_AR;
limit = REAL_MODE_SEG_LIMIT;
}
for (seg = &(ectx->cs); seg <= &(ectx->gs); seg++) {
seg->base = 0UL;
seg->limit = limit;
seg->attr = attr;
seg->selector = *sel;
sel++;
}
/* override cs attr/base/limit */
ectx->cs.attr = vcpu_regs->cs_ar;
ectx->cs.base = vcpu_regs->cs_base;
ectx->cs.limit = vcpu_regs->cs_limit;
ectx->gdtr.base = vcpu_regs->gdt.base;
ectx->gdtr.limit = vcpu_regs->gdt.limit;
ectx->idtr.base = vcpu_regs->idt.base;
ectx->idtr.limit = vcpu_regs->idt.limit;
ectx->ldtr.selector = vcpu_regs->ldt_sel;
ectx->tr.selector = vcpu_regs->tr_sel;
/* NOTE:
* This is to set the ldtr and tr to default value.
* If the set_vcpu_regs is used not only for vcpu state
* initialization, this part of code needs be revised.
*/
ectx->ldtr.base = 0UL;
ectx->tr.base = 0UL;
ectx->ldtr.limit = 0xFFFFU;
ectx->tr.limit = 0xFFFFU;
ectx->ldtr.attr = LDTR_AR;
ectx->tr.attr = TR_AR;
(void)memcpy_s((void *)&(ctx->cpu_regs), sizeof(struct acrn_gp_regs),
(void *)&(vcpu_regs->gprs), sizeof(struct acrn_gp_regs));
vcpu_set_rip(vcpu, vcpu_regs->rip);
vcpu_set_efer(vcpu, vcpu_regs->ia32_efer);
vcpu_set_rsp(vcpu, vcpu_regs->gprs.rsp);
if (vcpu_regs->rflags == 0UL) {
vcpu_set_rflags(vcpu, 0x02UL);
} else {
vcpu_set_rflags(vcpu, vcpu_regs->rflags & ~(0x8d5UL));
}
/* cr0, cr3 and cr4 needs be set without using API.
* The real cr0/cr3/cr4 writing will be delayed to
* init_vmcs
*/
ctx->cr0 = vcpu_regs->cr0;
ectx->cr3 = vcpu_regs->cr3;
ctx->cr4 = vcpu_regs->cr4;
set_vcpu_mode(vcpu, vcpu_regs->cs_ar, vcpu_regs->ia32_efer,
vcpu_regs->cr0);
}
static struct acrn_vcpu_regs realmode_init_vregs = {
.gdt = {
.limit = 0xFFFFU,
.base = 0UL,
},
.idt = {
.limit = 0xFFFFU,
.base = 0UL,
},
.cs_ar = REAL_MODE_CODE_SEG_AR,
.cs_sel = REAL_MODE_BSP_INIT_CODE_SEL,
.cs_base = 0xFFFF0000UL,
.cs_limit = 0xFFFFU,
.rip = 0xFFF0UL,
.cr0 = CR0_ET | CR0_NE,
.cr3 = 0UL,
.cr4 = 0UL,
};
static uint64_t init_vgdt[] = {
0x0UL,
0x0UL,
0x00CF9B000000FFFFUL, /* Linear Code */
0x00CF93000000FFFFUL, /* Linear Data */
};
static struct acrn_vcpu_regs protect_mode_init_vregs = {
.cs_ar = PROTECTED_MODE_CODE_SEG_AR,
.cs_limit = PROTECTED_MODE_SEG_LIMIT,
.cs_sel = 0x10U,
.cr0 = CR0_ET | CR0_NE | CR0_PE,
.ds_sel = 0x18U,
.ss_sel = 0x18U,
.es_sel = 0x18U,
};
void reset_vcpu_regs(struct acrn_vcpu *vcpu)
{
set_vcpu_regs(vcpu, &realmode_init_vregs);
}
void init_vcpu_protect_mode_regs(struct acrn_vcpu *vcpu, uint64_t vgdt_base_gpa)
{
struct acrn_vcpu_regs vcpu_regs;
(void)memcpy_s((void*)&vcpu_regs, sizeof(struct acrn_vcpu_regs),
(void *)&protect_mode_init_vregs, sizeof(struct acrn_vcpu_regs));
vcpu_regs.gdt.base = vgdt_base_gpa;
vcpu_regs.gdt.limit = sizeof(init_vgdt) - 1U;
(void)copy_to_gpa(vcpu->vm, &init_vgdt, vgdt_base_gpa, sizeof(init_vgdt));
set_vcpu_regs(vcpu, &vcpu_regs);
}
void set_vcpu_startup_entry(struct acrn_vcpu *vcpu, uint64_t entry)
{
struct ext_context *ectx;
ectx = &(vcpu->arch.contexts[vcpu->arch.cur_context].ext_ctx);
ectx->cs.selector = (uint16_t)((entry >> 4U) & 0xFFFFU);
ectx->cs.base = ectx->cs.selector << 4U;
vcpu_set_rip(vcpu, 0UL);
}
/*
* @pre vm != NULL && rtn_vcpu_handle != NULL
*/
int32_t create_vcpu(uint16_t pcpu_id, struct acrn_vm *vm, struct acrn_vcpu **rtn_vcpu_handle)
{
struct acrn_vcpu *vcpu;
uint16_t vcpu_id;
int32_t ret;
pr_info("Creating VCPU working on PCPU%hu", pcpu_id);
/*
* vcpu->vcpu_id = vm->hw.created_vcpus;
* vm->hw.created_vcpus++;
*/
vcpu_id = vm->hw.created_vcpus;
if (vcpu_id < MAX_VCPUS_PER_VM) {
/* Allocate memory for VCPU */
vcpu = &(vm->hw.vcpu_array[vcpu_id]);
(void)memset((void *)vcpu, 0U, sizeof(struct acrn_vcpu));
/* Initialize CPU ID for this VCPU */
vcpu->vcpu_id = vcpu_id;
per_cpu(ever_run_vcpu, pcpu_id) = vcpu;
/* Initialize the parent VM reference */
vcpu->vm = vm;
/* Initialize the virtual ID for this VCPU */
/* FIXME:
* We have assumption that we always destroys vcpus in one
* shot (like when vm is destroyed). If we need to support
* specific vcpu destroy on fly, this vcpu_id assignment
* needs revise.
*/
pr_info("Create VM%d-VCPU%d, Role: %s",
vcpu->vm->vm_id, vcpu->vcpu_id,
is_vcpu_bsp(vcpu) ? "PRIMARY" : "SECONDARY");
/*
* If the logical processor is in VMX non-root operation and
* the "enable VPID" VM-execution control is 1, the current VPID
* is the value of the VPID VM-execution control field in the VMCS.
*
* This assignment guarantees a unique non-zero per vcpu vpid in runtime.
*/
vcpu->arch.vpid = 1U + (vm->vm_id * MAX_VCPUS_PER_VM) + vcpu->vcpu_id;
/* Initialize exception field in VCPU context */
vcpu->arch.exception_info.exception = VECTOR_INVALID;
/* Initialize cur context */
vcpu->arch.cur_context = NORMAL_WORLD;
/* Create per vcpu vlapic */
vlapic_create(vcpu);
if (!vm_hide_mtrr(vm)) {
init_vmtrr(vcpu);
}
/* Populate the return handle */
*rtn_vcpu_handle = vcpu;
vcpu->launched = false;
vcpu->running = false;
vcpu->arch.nr_sipi = 0U;
vcpu->state = VCPU_INIT;
init_xsave(vcpu);
reset_vcpu_regs(vcpu);
(void)memset((void *)&vcpu->req, 0U, sizeof(struct io_request));
vm->hw.created_vcpus++;
ret = 0;
} else {
pr_err("%s, vcpu id is invalid!\n", __func__);
ret = -EINVAL;
}
return ret;
}
/*
* @pre vcpu != NULL
*/
int32_t run_vcpu(struct acrn_vcpu *vcpu)
{
uint32_t instlen, cs_attr;
uint64_t rip, ia32_efer, cr0;
struct run_context *ctx =
&vcpu->arch.contexts[vcpu->arch.cur_context].run_ctx;
int32_t status = 0;
int32_t ibrs_type = get_ibrs_type();
if (bitmap_test_and_clear_lock(CPU_REG_RIP, &vcpu->reg_updated)) {
exec_vmwrite(VMX_GUEST_RIP, ctx->rip);
}
if (bitmap_test_and_clear_lock(CPU_REG_RSP, &vcpu->reg_updated)) {
exec_vmwrite(VMX_GUEST_RSP, ctx->cpu_regs.regs.rsp);
}
if (bitmap_test_and_clear_lock(CPU_REG_EFER, &vcpu->reg_updated)) {
exec_vmwrite64(VMX_GUEST_IA32_EFER_FULL, ctx->ia32_efer);
}
if (bitmap_test_and_clear_lock(CPU_REG_RFLAGS, &vcpu->reg_updated)) {
exec_vmwrite(VMX_GUEST_RFLAGS, ctx->rflags);
}
/*
* Currently, updating CR0/CR4 here is only designed for world
* switching. There should no other module request updating
* CR0/CR4 here.
*/
if (bitmap_test_and_clear_lock(CPU_REG_CR0, &vcpu->reg_updated)) {
vcpu_set_cr0(vcpu, ctx->cr0);
}
if (bitmap_test_and_clear_lock(CPU_REG_CR4, &vcpu->reg_updated)) {
vcpu_set_cr4(vcpu, ctx->cr4);
}
/* If this VCPU is not already launched, launch it */
if (!vcpu->launched) {
pr_info("VM %d Starting VCPU %hu",
vcpu->vm->vm_id, vcpu->vcpu_id);
if (vcpu->arch.vpid != 0U) {
exec_vmwrite16(VMX_VPID, vcpu->arch.vpid);
}
/*
* A power-up or a reset invalidates all linear mappings,
* guest-physical mappings, and combined mappings
*/
flush_vpid_global();
/* Set XCR0 and XSS to default value */
write_xcr(0, XCR0_DEFAULT);
msr_write(MSR_IA32_XSS, XSS_DEFAULT);
/* Set vcpu launched */
vcpu->launched = true;
/* avoid VMCS recycling RSB usage, set IBPB.
* NOTE: this should be done for any time vmcs got switch
* currently, there is no other place to do vmcs switch
* Please add IBPB set for future vmcs switch case(like trusty)
*/
if (ibrs_type == IBRS_RAW) {
msr_write(MSR_IA32_PRED_CMD, PRED_SET_IBPB);
}
#ifdef CONFIG_L1D_FLUSH_VMENTRY_ENABLED
cpu_l1d_flush();
#endif
/*Mitigation for MDS vulnerability, overwrite CPU internal buffers */
cpu_internal_buffers_clear();
/* Launch the VM */
status = vmx_vmrun(ctx, VM_LAUNCH, ibrs_type);
/* See if VM launched successfully */
if (status == 0) {
if (is_vcpu_bsp(vcpu)) {
pr_info("VM %d VCPU %hu successfully launched",
vcpu->vm->vm_id, vcpu->vcpu_id);
}
}
} else {
/* This VCPU was already launched, check if the last guest
* instruction needs to be repeated and resume VCPU accordingly
*/
instlen = vcpu->arch.inst_len;
rip = vcpu_get_rip(vcpu);
exec_vmwrite(VMX_GUEST_RIP, ((rip+(uint64_t)instlen) &
0xFFFFFFFFFFFFFFFFUL));
#ifdef CONFIG_L1D_FLUSH_VMENTRY_ENABLED
cpu_l1d_flush();
#endif
/* Mitigation for MDS vulnerability, overwrite CPU internal buffers */
cpu_internal_buffers_clear();
/* Resume the VM */
status = vmx_vmrun(ctx, VM_RESUME, ibrs_type);
}
vcpu->reg_cached = 0UL;
cs_attr = exec_vmread32(VMX_GUEST_CS_ATTR);
ia32_efer = vcpu_get_efer(vcpu);
cr0 = vcpu_get_cr0(vcpu);
set_vcpu_mode(vcpu, cs_attr, ia32_efer, cr0);
/* Obtain current VCPU instruction length */
vcpu->arch.inst_len = exec_vmread32(VMX_EXIT_INSTR_LEN);
ctx->cpu_regs.regs.rsp = exec_vmread(VMX_GUEST_RSP);
/* Obtain VM exit reason */
vcpu->arch.exit_reason = exec_vmread32(VMX_EXIT_REASON);
if (status != 0) {
/* refer to 64-ia32 spec section 24.9.1 volume#3 */
if ((vcpu->arch.exit_reason & VMX_VMENTRY_FAIL) != 0U) {
pr_fatal("vmentry fail reason=%lx", vcpu->arch.exit_reason);
} else {
pr_fatal("vmexit fail err_inst=%x", exec_vmread32(VMX_INSTR_ERROR));
}
ASSERT(status == 0, "vm fail");
}
return status;
}
/*
* @pre vcpu != NULL
*/
void offline_vcpu(struct acrn_vcpu *vcpu)
{
vlapic_free(vcpu);
per_cpu(ever_run_vcpu, pcpuid_from_vcpu(vcpu)) = NULL;
vcpu->state = VCPU_OFFLINE;
}
void kick_vcpu(const struct acrn_vcpu *vcpu)
{
kick_thread(&vcpu->thread_obj);
}
/*
* @pre (&vcpu->stack[CONFIG_STACK_SIZE] & (CPU_STACK_ALIGN - 1UL)) == 0
*/
static uint64_t build_stack_frame(struct acrn_vcpu *vcpu)
{
uint64_t stacktop = (uint64_t)&vcpu->stack[CONFIG_STACK_SIZE];
struct stack_frame *frame;
uint64_t *ret;
frame = (struct stack_frame *)stacktop;
frame -= 1;
frame->magic = SP_BOTTOM_MAGIC;
frame->rip = (uint64_t)vcpu->thread_obj.thread_entry; /*return address*/
frame->rflag = 0UL;
frame->rbx = 0UL;
frame->rbp = 0UL;
frame->r12 = 0UL;
frame->r13 = 0UL;
frame->r14 = 0UL;
frame->r15 = 0UL;
frame->rdi = (uint64_t)&vcpu->thread_obj;
ret = &frame->rdi;
return (uint64_t) ret;
}
/* NOTE:
* vcpu should be paused before call this function.
*/
void reset_vcpu(struct acrn_vcpu *vcpu)
{
int32_t i;
struct acrn_vlapic *vlapic;
pr_dbg("vcpu%hu reset", vcpu->vcpu_id);
ASSERT(vcpu->state != VCPU_RUNNING,
"reset vcpu when it's running");
if (vcpu->state != VCPU_INIT) {
vcpu->state = VCPU_INIT;
vcpu->launched = false;
vcpu->running = false;
vcpu->arch.nr_sipi = 0U;
vcpu->arch.exception_info.exception = VECTOR_INVALID;
vcpu->arch.cur_context = NORMAL_WORLD;
vcpu->arch.irq_window_enabled = false;
(void)memset((void *)vcpu->arch.vmcs, 0U, PAGE_SIZE);
for (i = 0; i < NR_WORLD; i++) {
(void)memset((void *)(&vcpu->arch.contexts[i]), 0U,
sizeof(struct run_context));
}
vcpu->arch.cur_context = NORMAL_WORLD;
/* TODO: we may need to add one scheduler->reset_data to reset the thread_obj */
vcpu->thread_obj.notify_mode = SCHED_NOTIFY_IPI;
vlapic = vcpu_vlapic(vcpu);
vlapic_reset(vlapic, apicv_ops);
reset_vcpu_regs(vcpu);
}
}
void pause_vcpu(struct acrn_vcpu *vcpu, enum vcpu_state new_state)
{
uint16_t pcpu_id = pcpuid_from_vcpu(vcpu);
pr_dbg("vcpu%hu paused, new state: %d",
vcpu->vcpu_id, new_state);
vcpu->prev_state = vcpu->state;
vcpu->state = new_state;
if (vcpu->prev_state == VCPU_RUNNING) {
sleep_thread(&vcpu->thread_obj);
}
if (pcpu_id != get_pcpu_id()) {
while (vcpu->running) {
asm_pause();
}
}
}
void resume_vcpu(struct acrn_vcpu *vcpu)
{
pr_dbg("vcpu%hu resumed", vcpu->vcpu_id);
vcpu->state = vcpu->prev_state;
if (vcpu->state == VCPU_RUNNING) {
wake_thread(&vcpu->thread_obj);
}
}
void save_xsave_area(struct ext_context *ectx)
{
ectx->xcr0 = read_xcr(0);
ectx->xss = msr_read(MSR_IA32_XSS);
asm volatile("xsaves %0"
: : "m" (ectx->xs_area),
"d" (UINT32_MAX),
"a" (UINT32_MAX):
"memory");
}
void rstore_xsave_area(const struct ext_context *ectx)
{
write_xcr(0, ectx->xcr0);
msr_write(MSR_IA32_XSS, ectx->xss);
asm volatile("xrstors %0"
: : "m" (ectx->xs_area),
"d" (UINT32_MAX),
"a" (UINT32_MAX):
"memory");
}
/* TODO:
* Now we have switch_out and switch_in callbacks for each thread_object, and schedule
* will call them every thread switch. We can implement lazy context swtich , which
* only do context swtich when really need.
*/
static void context_switch_out(struct thread_object *prev)
{
struct acrn_vcpu *vcpu = list_entry(prev, struct acrn_vcpu, thread_obj);
struct ext_context *ectx = &(vcpu->arch.contexts[vcpu->arch.cur_context].ext_ctx);
/* We don't flush TLB as we assume each vcpu has different vpid */
ectx->ia32_star = msr_read(MSR_IA32_STAR);
ectx->ia32_lstar = msr_read(MSR_IA32_LSTAR);
ectx->ia32_fmask = msr_read(MSR_IA32_FMASK);
ectx->ia32_kernel_gs_base = msr_read(MSR_IA32_KERNEL_GS_BASE);
save_xsave_area(ectx);
vcpu->running = false;
}
static void context_switch_in(struct thread_object *next)
{
struct acrn_vcpu *vcpu = list_entry(next, struct acrn_vcpu, thread_obj);
struct ext_context *ectx = &(vcpu->arch.contexts[vcpu->arch.cur_context].ext_ctx);
load_vmcs(vcpu);
msr_write(MSR_IA32_STAR, ectx->ia32_star);
msr_write(MSR_IA32_LSTAR, ectx->ia32_lstar);
msr_write(MSR_IA32_FMASK, ectx->ia32_fmask);
msr_write(MSR_IA32_KERNEL_GS_BASE, ectx->ia32_kernel_gs_base);
rstore_xsave_area(ectx);
vcpu->running = true;
}
void launch_vcpu(struct acrn_vcpu *vcpu)
{
uint16_t pcpu_id = pcpuid_from_vcpu(vcpu);
vcpu->state = VCPU_RUNNING;
pr_dbg("vcpu%hu scheduled on pcpu%hu", vcpu->vcpu_id, pcpu_id);
wake_thread(&vcpu->thread_obj);
}
/* help function for vcpu create */
int32_t prepare_vcpu(struct acrn_vm *vm, uint16_t pcpu_id)
{
int32_t ret, i;
struct acrn_vcpu *vcpu = NULL;
char thread_name[16];
ret = create_vcpu(pcpu_id, vm, &vcpu);
if (ret == 0) {
snprintf(thread_name, 16U, "vm%hu:vcpu%hu", vm->vm_id, vcpu->vcpu_id);
(void)strncpy_s(vcpu->thread_obj.name, 16U, thread_name, 16U);
vcpu->thread_obj.sched_ctl = &per_cpu(sched_ctl, pcpu_id);
vcpu->thread_obj.thread_entry = vcpu_thread;
vcpu->thread_obj.pcpu_id = pcpu_id;
vcpu->thread_obj.notify_mode = SCHED_NOTIFY_IPI;
vcpu->thread_obj.host_sp = build_stack_frame(vcpu);
vcpu->thread_obj.switch_out = context_switch_out;
vcpu->thread_obj.switch_in = context_switch_in;
init_thread_data(&vcpu->thread_obj);
for (i = 0; i < VCPU_EVENT_NUM; i++) {
init_event(&vcpu->events[i]);
}
}
return ret;
}
/**
* @pre vcpu != NULL
*/
uint16_t pcpuid_from_vcpu(const struct acrn_vcpu *vcpu)
{
return sched_get_pcpuid(&vcpu->thread_obj);
}
uint64_t vcpumask2pcpumask(struct acrn_vm *vm, uint64_t vdmask)
{
uint16_t vcpu_id;
uint64_t dmask = 0UL;
struct acrn_vcpu *vcpu;
for (vcpu_id = 0U; vcpu_id < vm->hw.created_vcpus; vcpu_id++) {
if ((vdmask & (1UL << vcpu_id)) != 0UL) {
vcpu = vcpu_from_vid(vm, vcpu_id);
bitmap_set_nolock(pcpuid_from_vcpu(vcpu), &dmask);
}
}
return dmask;
}
/*
* @brief Check if vCPU uses LAPIC in x2APIC mode and the VM, vCPU belongs to, is configured for
* LAPIC Pass-through
*
* @pre vcpu != NULL
*
* @return true, if vCPU LAPIC is in x2APIC mode and VM, vCPU belongs to, is configured for
* LAPIC Pass-through
*/
bool is_lapic_pt_enabled(struct acrn_vcpu *vcpu)
{
return ((is_x2apic_enabled(vcpu_vlapic(vcpu))) && (is_lapic_pt_configured(vcpu->vm)));
}