mirror of
https://github.com/projectacrn/acrn-hypervisor.git
synced 2025-05-01 21:23:59 +00:00
It is possible for more than one vCPUs to trigger shutdown on an RTVM. We need to avoid entering VM_READY_TO_POWEROFF state again after the RTVM has been paused or shut down. Also, make sure an RTVM enters VM_READY_TO_POWEROFF state before it can be paused. v1 -> v2: - rename to poweroff_if_rt_vm for better clarity Tracked-On: #5411 Signed-off-by: Peter Fang <peter.fang@intel.com>
407 lines
12 KiB
C
407 lines
12 KiB
C
/*
|
|
* Copyright (C) 2018 Intel Corporation. All rights reserved.
|
|
*
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*/
|
|
|
|
#include <types.h>
|
|
#include <host_pm.h>
|
|
#include <vm.h>
|
|
#include <io.h>
|
|
#include <logmsg.h>
|
|
#include <platform_acpi_info.h>
|
|
#include <guest_pm.h>
|
|
#include <per_cpu.h>
|
|
|
|
int32_t validate_pstate(const struct acrn_vm *vm, uint64_t perf_ctl)
|
|
{
|
|
/* Note:
|
|
* 1. We don't validate Px request from SOS_VM for now;
|
|
* 2. Px request will be rejected if no VM Px data is set, even guest is running intel_pstate driver;
|
|
* 3. The Pstate frequency varies from LFM to HFM and then TFM, but not all frequencies between
|
|
* LFM to TFM are mapped in ACPI table. For acpi-cpufreq driver, the target Px value in MSR
|
|
* PERF_CTL should be matched with control value of px_data which come from ACPI table,
|
|
* but for intel_pstate driver the target Px value could be any value that between LFM to HFM.
|
|
* HV has no idea what driver guest is running, so we just check the LFM/TFM range here.
|
|
* Only checking Px by indexing control value in px_data might lost the guest Px request.
|
|
*/
|
|
int32_t ret = -1;
|
|
|
|
if (is_sos_vm(vm)) {
|
|
ret = 0;
|
|
} else {
|
|
uint8_t px_cnt = vm->pm.px_cnt;
|
|
const struct cpu_px_data *px_data = vm->pm.px_data;
|
|
|
|
if ((px_cnt != 0U) && (px_data != NULL)) {
|
|
uint64_t px_target_val, max_px_ctl_val, min_px_ctl_val;
|
|
|
|
/* get max px control value, should be for p(0), i.e. TFM. */
|
|
max_px_ctl_val = ((px_data[0].control & 0xff00UL) >> 8U);
|
|
|
|
/* get min px control value, should be for p(px_cnt-1), i.e. LFM. */
|
|
min_px_ctl_val = ((px_data[px_cnt - 1U].control & 0xff00UL) >> 8U);
|
|
|
|
px_target_val = ((perf_ctl & 0xff00UL) >> 8U);
|
|
if ((px_target_val <= max_px_ctl_val) && (px_target_val >= min_px_ctl_val)) {
|
|
ret = 0;
|
|
}
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void vm_setup_cpu_px(struct acrn_vm *vm)
|
|
{
|
|
uint32_t px_data_size;
|
|
struct cpu_state_info *pm_state_info = get_cpu_pm_state_info();
|
|
|
|
vm->pm.px_cnt = 0U;
|
|
(void)memset(vm->pm.px_data, 0U, MAX_PSTATE * sizeof(struct cpu_px_data));
|
|
|
|
if ((pm_state_info->px_cnt != 0U) && (pm_state_info->px_data != NULL)) {
|
|
ASSERT((pm_state_info->px_cnt <= MAX_PSTATE), "failed to setup cpu px");
|
|
|
|
vm->pm.px_cnt = pm_state_info->px_cnt;
|
|
px_data_size = ((uint32_t)vm->pm.px_cnt) * sizeof(struct cpu_px_data);
|
|
(void)memcpy_s(vm->pm.px_data, px_data_size, pm_state_info->px_data, px_data_size);
|
|
}
|
|
}
|
|
|
|
static void vm_setup_cpu_cx(struct acrn_vm *vm)
|
|
{
|
|
uint32_t cx_data_size;
|
|
struct cpu_state_info *pm_state_info = get_cpu_pm_state_info();
|
|
|
|
vm->pm.cx_cnt = 0U;
|
|
(void)memset(vm->pm.cx_data, 0U, MAX_CSTATE * sizeof(struct cpu_cx_data));
|
|
|
|
if ((pm_state_info->cx_cnt != 0U) && (pm_state_info->cx_data != NULL)) {
|
|
ASSERT((pm_state_info->cx_cnt <= MAX_CX_ENTRY), "failed to setup cpu cx");
|
|
|
|
vm->pm.cx_cnt = pm_state_info->cx_cnt;
|
|
cx_data_size = ((uint32_t)vm->pm.cx_cnt) * sizeof(struct cpu_cx_data);
|
|
|
|
/* please note pm.cx_data[0] is a empty space holder,
|
|
* pm.cx_data[1...MAX_CX_ENTRY] would be used to store cx entry datas.
|
|
*/
|
|
(void)memcpy_s(vm->pm.cx_data + 1, cx_data_size, pm_state_info->cx_data, cx_data_size);
|
|
}
|
|
}
|
|
|
|
static inline void init_cx_port(struct acrn_vm *vm)
|
|
{
|
|
uint8_t cx_idx;
|
|
|
|
for (cx_idx = 2U; cx_idx <= vm->pm.cx_cnt; cx_idx++) {
|
|
struct cpu_cx_data *cx_data = vm->pm.cx_data + cx_idx;
|
|
|
|
if (cx_data->cx_reg.space_id == SPACE_SYSTEM_IO) {
|
|
uint16_t port = (uint16_t)cx_data->cx_reg.address;
|
|
|
|
allow_guest_pio_access(vm, port, 1U);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void vm_setup_cpu_state(struct acrn_vm *vm)
|
|
{
|
|
vm_setup_cpu_px(vm);
|
|
vm_setup_cpu_cx(vm);
|
|
init_cx_port(vm);
|
|
}
|
|
|
|
/* This function is for power management Sx state implementation,
|
|
* VM need to load the Sx state data to implement S3/S5.
|
|
*/
|
|
static int32_t vm_load_pm_s_state(struct acrn_vm *vm)
|
|
{
|
|
int32_t ret;
|
|
struct pm_s_state_data *sx_data = get_host_sstate_data();
|
|
|
|
if ((sx_data->pm1a_evt.address == 0UL) || (sx_data->pm1a_cnt.address == 0UL)
|
|
|| (sx_data->wake_vector_32 == NULL)) {
|
|
pr_err("System S3/S5 is NOT supported.");
|
|
ret = -1;
|
|
} else {
|
|
pr_info("System S3/S5 is supported.");
|
|
vm->pm.sx_state_data = sx_data;
|
|
ret = 0;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static inline bool is_s3_enabled(uint32_t pm1_cnt)
|
|
{
|
|
return ((pm1_cnt & (1U << BIT_SLP_EN)) != 0U);
|
|
}
|
|
|
|
static inline uint8_t get_slp_typx(uint32_t pm1_cnt)
|
|
{
|
|
return (uint8_t)((pm1_cnt & 0x1fffU) >> BIT_SLP_TYPx);
|
|
}
|
|
|
|
static bool pm1ab_io_read(struct acrn_vcpu *vcpu, uint16_t addr, size_t width)
|
|
{
|
|
struct pio_request *pio_req = &vcpu->req.reqs.pio;
|
|
|
|
pio_req->value = pio_read(addr, width);
|
|
|
|
return true;
|
|
}
|
|
|
|
static inline void enter_s5(struct acrn_vcpu *vcpu, uint32_t pm1a_cnt_val, uint32_t pm1b_cnt_val)
|
|
{
|
|
struct acrn_vm *vm = vcpu->vm;
|
|
uint16_t pcpu_id = pcpuid_from_vcpu(vcpu);
|
|
|
|
get_vm_lock(vm);
|
|
/*
|
|
* Currently, we assume SOS has full ACPI power management stack.
|
|
* That means the value from SOS should be saved and used to shut
|
|
* down the system.
|
|
*/
|
|
if (is_sos_vm(vm)) {
|
|
save_s5_reg_val(pm1a_cnt_val, pm1b_cnt_val);
|
|
}
|
|
pause_vm(vm);
|
|
put_vm_lock(vm);
|
|
|
|
bitmap_set_nolock(vm->vm_id, &per_cpu(shutdown_vm_bitmap, pcpu_id));
|
|
make_shutdown_vm_request(pcpu_id);
|
|
}
|
|
|
|
static inline void enter_s3(struct acrn_vm *vm, uint32_t pm1a_cnt_val, uint32_t pm1b_cnt_val)
|
|
{
|
|
uint32_t guest_wakeup_vec32;
|
|
|
|
get_vm_lock(vm);
|
|
/* Save the wakeup vec set by guest OS. Will return to guest
|
|
* with this wakeup vec as entry.
|
|
*/
|
|
stac();
|
|
guest_wakeup_vec32 = *(vm->pm.sx_state_data->wake_vector_32);
|
|
clac();
|
|
|
|
pause_vm(vm); /* pause sos_vm before suspend system */
|
|
host_enter_s3(vm->pm.sx_state_data, pm1a_cnt_val, pm1b_cnt_val);
|
|
resume_vm_from_s3(vm, guest_wakeup_vec32); /* jump back to vm */
|
|
put_vm_lock(vm);
|
|
}
|
|
|
|
/**
|
|
* @pre vcpu != NULL
|
|
* @pre vcpu->vm != NULL
|
|
*/
|
|
static bool pm1ab_io_write(struct acrn_vcpu *vcpu, uint16_t addr, size_t width, uint32_t v)
|
|
{
|
|
static uint32_t pm1a_cnt_ready = 0U;
|
|
uint32_t pm1a_cnt_val;
|
|
bool to_write = true;
|
|
struct acrn_vm *vm = vcpu->vm;
|
|
|
|
if (width == 2U) {
|
|
uint8_t val = get_slp_typx(v);
|
|
|
|
if ((addr == vm->pm.sx_state_data->pm1a_cnt.address) && is_s3_enabled(v)) {
|
|
|
|
if (vm->pm.sx_state_data->pm1b_cnt.address != 0UL) {
|
|
pm1a_cnt_ready = v;
|
|
} else {
|
|
if (vm->pm.sx_state_data->s3_pkg.val_pm1a == val) {
|
|
enter_s3(vm, v, 0U);
|
|
} else if (vm->pm.sx_state_data->s5_pkg.val_pm1a == val) {
|
|
enter_s5(vcpu, v, 0U);
|
|
}
|
|
}
|
|
|
|
to_write = false;
|
|
} else if ((addr == vm->pm.sx_state_data->pm1b_cnt.address) && is_s3_enabled(v)) {
|
|
|
|
if (pm1a_cnt_ready != 0U) {
|
|
pm1a_cnt_val = pm1a_cnt_ready;
|
|
pm1a_cnt_ready = 0U;
|
|
|
|
if (vm->pm.sx_state_data->s3_pkg.val_pm1b == val) {
|
|
enter_s3(vm, pm1a_cnt_val, v);
|
|
} else if (vm->pm.sx_state_data->s5_pkg.val_pm1b == val) {
|
|
enter_s5(vcpu, pm1a_cnt_val, v);
|
|
}
|
|
} else {
|
|
/* the case broke ACPI spec */
|
|
pr_err("PM1B_CNT write error!");
|
|
}
|
|
|
|
to_write = false;
|
|
} else {
|
|
/* No other state currently, do nothing */
|
|
}
|
|
}
|
|
|
|
if (to_write) {
|
|
pio_write(v, addr, width);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void register_gas_io_handler(struct acrn_vm *vm, uint32_t pio_idx, const struct acpi_generic_address *gas)
|
|
{
|
|
uint8_t io_len[5] = {0U, 1U, 2U, 4U, 8U};
|
|
struct vm_io_range gas_io;
|
|
|
|
if ((gas->address != 0UL) && (gas->space_id == SPACE_SYSTEM_IO)
|
|
&& (gas->access_size != 0U) && (gas->access_size <= 4U)) {
|
|
gas_io.base = (uint16_t)gas->address;
|
|
gas_io.len = io_len[gas->access_size];
|
|
|
|
register_pio_emulation_handler(vm, pio_idx, &gas_io, &pm1ab_io_read, &pm1ab_io_write);
|
|
|
|
pr_dbg("Enable PM1A trap for VM %d, port 0x%x, size %d\n", vm->vm_id, gas_io.base, gas_io.len);
|
|
}
|
|
}
|
|
|
|
static void register_pm1ab_handler(struct acrn_vm *vm)
|
|
{
|
|
struct pm_s_state_data *sx_data = vm->pm.sx_state_data;
|
|
|
|
register_gas_io_handler(vm, PM1A_EVT_PIO_IDX, &(sx_data->pm1a_evt));
|
|
register_gas_io_handler(vm, PM1B_EVT_PIO_IDX, &(sx_data->pm1b_evt));
|
|
register_gas_io_handler(vm, PM1A_CNT_PIO_IDX, &(sx_data->pm1a_cnt));
|
|
register_gas_io_handler(vm, PM1B_CNT_PIO_IDX, &(sx_data->pm1b_cnt));
|
|
}
|
|
|
|
static bool rt_vm_pm1a_io_read(__unused struct acrn_vcpu *vcpu,
|
|
__unused uint16_t addr, __unused size_t width)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* retval true means that we complete the emulation in HV and no need to re-inject the request to DM.
|
|
* retval false means that we should re-inject the request to DM.
|
|
*/
|
|
/**
|
|
* @pre vcpu != NULL
|
|
* @pre vcpu->vm != NULL
|
|
*/
|
|
static bool rt_vm_pm1a_io_write(struct acrn_vcpu *vcpu, uint16_t addr, size_t width, uint32_t v)
|
|
{
|
|
if (width != 2U) {
|
|
pr_dbg("Invalid address (0x%x) or width (0x%x)", addr, width);
|
|
} else {
|
|
if ((((v & VIRTUAL_PM1A_SLP_EN) != 0U) && (((v & VIRTUAL_PM1A_SLP_TYP) >> 10U) == 5U)) != 0U) {
|
|
poweroff_if_rt_vm(vcpu->vm);
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void register_rt_vm_pm1a_ctl_handler(struct acrn_vm *vm)
|
|
{
|
|
struct vm_io_range io_range;
|
|
|
|
io_range.base = VIRTUAL_PM1A_CNT_ADDR;
|
|
io_range.len = 1U;
|
|
|
|
register_pio_emulation_handler(vm, VIRTUAL_PM1A_CNT_PIO_IDX, &io_range,
|
|
&rt_vm_pm1a_io_read, &rt_vm_pm1a_io_write);
|
|
}
|
|
|
|
/*
|
|
* @pre vcpu != NULL
|
|
*/
|
|
static bool prelaunched_vm_sleep_io_read(struct acrn_vcpu *vcpu, __unused uint16_t addr, __unused size_t width)
|
|
{
|
|
vcpu->req.reqs.pio.value = 0U;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* @pre vcpu != NULL
|
|
* @pre vcpu->vm != NULL
|
|
*/
|
|
static bool prelaunched_vm_sleep_io_write(struct acrn_vcpu *vcpu, uint16_t addr, size_t width, uint32_t v)
|
|
{
|
|
if ((width == 1U) && (addr == VIRTUAL_SLEEP_CTL_ADDR)) {
|
|
bool slp_en;
|
|
uint32_t slp_type;
|
|
struct acrn_vm *vm = vcpu->vm;
|
|
|
|
/* ACPI sleep control register:
|
|
*
|
|
* Bits 2~4: SLP_TYPx, defines the type of sleeping state the system enters when the
|
|
* SLP_EN bit is set to one. This 3-bit field defines the type of hardware sleep state
|
|
* the system enters when the SLP_EN bit is set. The \_S5 object contains 3-bit binary
|
|
* value (0x5) associated with the S5 sleeping state
|
|
*
|
|
* Bit 5: SLP_EN, This is a write-only bit and reads to it always return a zero. Setting
|
|
* this bit causes the system to sequence into the sleeping state associated with the
|
|
* SLP_TYPx fields programmed with the values from the \_S5 object
|
|
*/
|
|
slp_type = (v >> 2U) & 0x7U;
|
|
slp_en = (v >> 5U) & 0x1U;
|
|
|
|
if (slp_en && (slp_type == 5U)) {
|
|
get_vm_lock(vm);
|
|
poweroff_if_rt_vm(vm);
|
|
pause_vm(vm);
|
|
put_vm_lock(vm);
|
|
|
|
bitmap_set_nolock(vm->vm_id, &per_cpu(shutdown_vm_bitmap, pcpuid_from_vcpu(vcpu)));
|
|
make_shutdown_vm_request(pcpuid_from_vcpu(vcpu));
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void register_prelaunched_vm_sleep_handler(struct acrn_vm *vm)
|
|
{
|
|
struct vm_io_range io_range;
|
|
|
|
/* ACPI reduced HW mode is used for pre-launched VM
|
|
*
|
|
* The optional ACPI sleep registers (SLEEP_CONTROL_REG and SLEEP_STATUS_REG) specify
|
|
* a standard mechanism for system sleep state entry on HW-Reduced ACPI systems. When
|
|
* implemented, the Sleep registers are a replacement for the SLP_TYP, SLP_EN and WAK_STS
|
|
* registers in the PM1_BLK.
|
|
*/
|
|
io_range.base = VIRTUAL_SLEEP_CTL_ADDR;
|
|
io_range.len = 2U;
|
|
|
|
register_pio_emulation_handler(vm, SLEEP_CTL_PIO_IDX, &io_range,
|
|
&prelaunched_vm_sleep_io_read, &prelaunched_vm_sleep_io_write);
|
|
}
|
|
|
|
void init_guest_pm(struct acrn_vm *vm)
|
|
{
|
|
struct pm_s_state_data *sx_data = get_host_sstate_data();
|
|
|
|
/*
|
|
* In enter_s5(), it will call save_s5_reg_val() to initialize system_pm1a_cnt_val/system_pm1b_cnt_val when the
|
|
* vm is SOS.
|
|
* If there is no SOS, save_s5_reg_val() will not be called and these 2 variables will not be initialized properly
|
|
* so shutdown_system() will fail, explicitly init here to avoid this
|
|
*/
|
|
save_s5_reg_val((sx_data->s5_pkg.val_pm1a << BIT_SLP_TYPx) | (1U << BIT_SLP_EN),
|
|
(sx_data->s5_pkg.val_pm1b << BIT_SLP_TYPx) | (1U << BIT_SLP_EN));
|
|
|
|
vm_setup_cpu_state(vm);
|
|
|
|
if (is_sos_vm(vm)) {
|
|
/* Load pm S state data */
|
|
if (vm_load_pm_s_state(vm) == 0) {
|
|
register_pm1ab_handler(vm);
|
|
}
|
|
} else if (is_postlaunched_vm(vm) && is_rt_vm(vm)) {
|
|
/* Intercept the virtual pm port for post launched RTVM */
|
|
register_rt_vm_pm1a_ctl_handler(vm);
|
|
} else if (is_prelaunched_vm(vm)) {
|
|
/* Intercept the virtual sleep control/status registers for pre-launched VM */
|
|
register_prelaunched_vm_sleep_handler(vm);
|
|
}
|
|
}
|