acrn-hypervisor/hypervisor/dm/vpci/pci_pt.c
dongshen f0244b24e7 HV: call get_vbar_base() to get the newly set vbar base address in 64-bit
Replace new_base with vbar_base in vdev_pt_remap_generic_mem_vbar().
We will call vdev_pt_remap_generic_mem_vbar() after a new vbar base
is set, no need to pass new_base to vdev_pt_remap_generic_mem_vbar(),
as this new vbar base (vbar_base) can be obtained by calling get_vbar_base().

The reason we call vdev_pt_remap_generic_mem_vbar() after a new vbar base
is set is for 64-bit mmio handling: when the lower 32-bit of 64-bit mmio vbar is
set, we will defer calling vdev_pt_remap_generic_mem_vbar until its upper 32-bit
vbar base is set.

Tracked-On: #3241
Signed-off-by: dongshen <dongsheng.x.zhang@intel.com>
Reviewed-by: Eddie Dong <eddie.dong@intel.com>
2019-07-01 09:57:05 +08:00

471 lines
15 KiB
C

/*-
* Copyright (c) 2011 NetApp, Inc.
* Copyright (c) 2018 Intel Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <vm.h>
#include <errno.h>
#include <ept.h>
#include <mmu.h>
#include <logmsg.h>
#include "vpci_priv.h"
/**
* @brief get bar's full base address in 64-bit
* @pre idx < nr_bars
* For 64-bit MMIO bar, its lower 32-bits base address and upper 32-bits base are combined
* into one 64-bit base address
*/
static uint64_t pci_bar_2_bar_base(const struct pci_bar *pbars, uint32_t nr_bars, uint32_t idx)
{
uint64_t base = 0UL;
uint64_t tmp;
const struct pci_bar *bar;
bar = &pbars[idx];
if (bar->is_64bit_high) {
ASSERT(idx > 0U, "idx for upper 32-bit of the 64-bit bar should be greater than 0!");
if (idx > 0U) {
const struct pci_bar *prev_bar = &pbars[idx - 1U];
/* Upper 32-bit of 64-bit bar (does not have flags portion) */
base = (uint64_t)(bar->reg.value);
base <<= 32U;
/* Lower 32-bit of a 64-bit bar (BITS 31-4 = base address, 16-byte aligned) */
tmp = (uint64_t)(prev_bar->reg.bits.mem.base);
tmp <<= 4U;
base |= tmp;
}
} else {
enum pci_bar_type type = pci_get_bar_type(bar->reg.value);
switch (type) {
case PCIBAR_IO_SPACE:
/* IO bar, BITS 31-2 = base address, 4-byte aligned */
base = (uint64_t)(bar->reg.bits.io.base);
base <<= 2U;
break;
case PCIBAR_MEM32:
base = (uint64_t)(bar->reg.bits.mem.base);
base <<= 4U;
break;
case PCIBAR_MEM64:
ASSERT((idx + 1U) < nr_bars, "idx for upper 32-bit of the 64-bit bar is out of range!");
if ((idx + 1U) < nr_bars) {
const struct pci_bar *next_bar = &pbars[idx + 1U];
/* Upper 32-bit of 64-bit bar */
base = (uint64_t)(next_bar->reg.value);
base <<= 32U;
/* Lower 32-bit of a 64-bit bar (BITS 31-4 = base address, 16-byte aligned) */
tmp = (uint64_t)(bar->reg.bits.mem.base);
tmp <<= 4U;
base |= tmp;
}
break;
default:
/* Nothing to do */
break;
}
}
return base;
}
/**
* @brief get vbar's full base address in 64-bit
* For 64-bit MMIO bar, its lower 32-bits base address and upper 32-bits base are combined
* into one 64-bit base address
* @pre vdev != NULL
*/
static uint64_t get_vbar_base(const struct pci_vdev *vdev, uint32_t idx)
{
return pci_bar_2_bar_base(&vdev->bar[0], vdev->nr_bars, idx);
}
/**
* @brief get pbar's full address in 64-bit
* For 64-bit MMIO bar, its lower 32-bits base address and upper 32-bits base are combined
* into one 64-bit base address
* @pre pdev != NULL
*/
static uint64_t get_pbar_base(const struct pci_pdev *pdev, uint32_t idx)
{
return pci_bar_2_bar_base(&pdev->bar[0], pdev->nr_bars, idx);
}
/**
* @pre vdev != NULL
* @pre vdev->vpci != NULL
* @pre vdev->vpci->vm != NULL
*/
int32_t vdev_pt_read_cfg(const struct pci_vdev *vdev, uint32_t offset, uint32_t bytes, uint32_t *val)
{
int32_t ret = -ENODEV;
if (is_prelaunched_vm(vdev->vpci->vm) && is_bar_offset(vdev->nr_bars, offset)) {
*val = pci_vdev_read_cfg(vdev, offset, bytes);
ret = 0;
}
return ret;
}
/**
* @pre vdev != NULL
* @pre vdev->vpci != NULL
* @pre vdev->vpci->vm != NULL
* @pre vdev->pdev != NULL
* @pre vdev->pdev->msix.table_bar < vdev->nr_bars
*/
void vdev_pt_remap_msix_table_bar(struct pci_vdev *vdev)
{
uint32_t i;
uint64_t addr_hi, addr_lo;
struct pci_msix *msix = &vdev->msix;
struct pci_pdev *pdev = vdev->pdev;
struct pci_bar *pbar;
ASSERT(vdev->pdev->msix.table_bar < vdev->nr_bars, "msix->table_bar is out of range");
/* Mask all table entries */
for (i = 0U; i < msix->table_count; i++) {
msix->table_entries[i].vector_control = PCIM_MSIX_VCTRL_MASK;
msix->table_entries[i].addr = 0U;
msix->table_entries[i].data = 0U;
}
pbar = &pdev->bar[msix->table_bar];
if (pbar != NULL) {
uint64_t pbar_base = get_pbar_base(pdev, msix->table_bar); /* pbar (hpa) */
msix->mmio_hpa = pbar_base;
if (is_prelaunched_vm(vdev->vpci->vm)) {
msix->mmio_gpa = get_vbar_base(vdev, msix->table_bar);
} else {
msix->mmio_gpa = sos_vm_hpa2gpa(pbar_base);
}
msix->mmio_size = pbar->size;
}
/*
* For SOS:
* --------
* MSI-X Table BAR Contains:
* Other Info + Tables + PBA Other info already mapped into EPT (since SOS)
* Tables are handled by HV MMIO handler (4k adjusted up and down)
* and remaps interrupts
* PBA already mapped into EPT (since SOS)
*
* Other Info + Tables Other info already mapped into EPT (since SOS)
* Tables are handled by HV MMIO handler (4k adjusted up and down)
* and remaps interrupts
*
* Tables Tables are handled by HV MMIO handler (4k adjusted up and down)
* and remaps interrupts
*
* For UOS (launched by DM):
* -------------------------
* MSI-X Table BAR Contains:
* Other Info + Tables + PBA Other info mapped into EPT (4k adjusted) by DM
* Tables are handled by DM MMIO handler (4k adjusted up and down) and SOS writes to tables,
* intercepted by HV MMIO handler and HV remaps interrupts
* PBA already mapped into EPT by DM
*
* Other Info + Tables Other info mapped into EPT by DM
* Tables are handled by DM MMIO handler (4k adjusted up and down) and SOS writes to tables,
* intercepted by HV MMIO handler and HV remaps interrupts.
*
* Tables Tables are handled by DM MMIO handler (4k adjusted up and down) and SOS writes to tables,
* intercepted by HV MMIO handler and HV remaps interrupts.
*
* For Pre-launched VMs (no SOS/DM):
* --------------------------------
* MSI-X Table BAR Contains:
* All 3 cases: Writes to MMIO region in MSI-X Table BAR handled by HV MMIO handler
* If the offset falls within the MSI-X table [offset, offset+tables_size), HV remaps
* interrupts.
* Else, HV writes/reads to/from the corresponding HPA
*/
if (msix->mmio_gpa != 0UL) {
if (is_prelaunched_vm(vdev->vpci->vm)) {
addr_hi = msix->mmio_gpa + msix->mmio_size;
addr_lo = msix->mmio_gpa;
} else {
/*
* PCI Spec: a BAR may also map other usable address space that is not associated
* with MSI-X structures, but it must not share any naturally aligned 4 KB
* address range with one where either MSI-X structure resides.
* The MSI-X Table and MSI-X PBA are permitted to co-reside within a naturally
* aligned 4 KB address range.
*
* If PBA or others reside in the same BAR with MSI-X Table, devicemodel could
* emulate them and maps these memory range at the 4KB boundary. Here, we should
* make sure only intercept the minimum number of 4K pages needed for MSI-X table.
*/
/* The higher boundary of the 4KB aligned address range for MSI-X table */
addr_hi = msix->mmio_gpa + msix->table_offset + (msix->table_count * MSIX_TABLE_ENTRY_SIZE);
addr_hi = round_page_up(addr_hi);
/* The lower boundary of the 4KB aligned address range for MSI-X table */
addr_lo = round_page_down(msix->mmio_gpa + msix->table_offset);
}
if (vdev->bar_base_mapped[msix->table_bar] != addr_lo) {
register_mmio_emulation_handler(vdev->vpci->vm, vmsix_table_mmio_access_handler,
addr_lo, addr_hi, vdev);
/* Remember the previously registered MMIO vbar base */
vdev->bar_base_mapped[msix->table_bar] = addr_lo;
}
}
}
/**
* @brief Remaps guest MMIO BARs other than MSI-x Table BAR
* This API is invoked upon guest re-programming PCI BAR with MMIO region
* after a new vbar is set.
* @pre vdev != NULL
* @pre vdev->vpci != NULL
* @pre vdev->vpci->vm != NULL
*/
static void vdev_pt_remap_generic_mem_vbar(struct pci_vdev *vdev, uint32_t idx)
{
struct acrn_vm *vm = vdev->vpci->vm;
uint64_t vbar_base = get_vbar_base(vdev, idx); /* vbar (gpa) */
/* If the old vbar is mapped before, unmap it first */
if (vdev->bar_base_mapped[idx] != 0UL) {
ept_del_mr(vm, (uint64_t *)(vm->arch_vm.nworld_eptp),
vdev->bar_base_mapped[idx], /* GPA (old vbar) */
vdev->bar[idx].size);
vdev->bar_base_mapped[idx] = 0UL;
}
/* If a new vbar is set (nonzero), set the EPT mapping accordingly */
if (vbar_base != 0UL) {
uint64_t pbar_base = get_pbar_base(vdev->pdev, idx); /* pbar (hpa) */
/* Map the physical BAR in the guest MMIO space */
ept_add_mr(vm, (uint64_t *)(vm->arch_vm.nworld_eptp),
pbar_base, /* HPA (pbar) */
vbar_base, /* GPA (new vbar) */
vdev->bar[idx].size,
EPT_WR | EPT_RD | EPT_UNCACHED);
/* Remember the previously mapped MMIO vbar */
vdev->bar_base_mapped[idx] = vbar_base;
}
}
/**
* @brief Set the base address portion of the vbar base address register (32-bit)
* base: bar value with flags portion masked off
* @pre vbar != NULL
*/
static void set_vbar_base(struct pci_bar *vbar, uint32_t base)
{
union pci_bar_reg bar_reg;
bar_reg.value = base;
if (vbar->is_64bit_high) {
/* Upper 32-bit of a 64-bit bar does not have the flags portion */
vbar->reg.value = bar_reg.value;
} else if (vbar->reg.bits.io.is_io == 1U) {
/* IO bar, BITS 31-2 = base address, 4-byte aligned */
vbar->reg.bits.io.base = bar_reg.bits.io.base;
} else {
/* MMIO bar, BITS 31-4 = base address, 16-byte aligned */
vbar->reg.bits.mem.base = bar_reg.bits.mem.base;
}
}
/**
* @pre vdev != NULL
* @pre (vdev->bar[idx].type == PCIBAR_NONE) || (vdev->bar[idx].type == PCIBAR_MEM32)
*/
static void vdev_pt_write_vbar(struct pci_vdev *vdev, uint32_t offset, uint32_t val)
{
uint32_t idx;
uint32_t base, mask;
bool bar_update_normal;
bool is_msix_table_bar;
base = 0U;
idx = (offset - pci_bar_offset(0U)) >> 2U;
mask = ~(vdev->bar[idx].size - 1U);
switch (vdev->bar[idx].type) {
case PCIBAR_NONE:
vdev->bar[idx].base = 0UL;
break;
case PCIBAR_MEM32:
bar_update_normal = (val != (uint32_t)~0U);
is_msix_table_bar = (has_msix_cap(vdev) && (idx == vdev->msix.table_bar));
base = val & mask;
set_vbar_base(&vdev->bar[idx], base);
if (bar_update_normal) {
if (is_msix_table_bar) {
vdev->bar[idx].base = base;
vdev_pt_remap_msix_table_bar(vdev);
} else {
vdev_pt_remap_generic_mem_vbar(vdev, idx);
vdev->bar[idx].base = base;
}
}
break;
default:
/* Should never reach here, init_vdev_pt() only sets vbar type to PCIBAR_NONE and PCIBAR_MEM32 */
break;
}
/* Write the vbar value to corresponding virtualized vbar reg */
pci_vdev_write_cfg_u32(vdev, offset, vdev->bar[idx].reg.value);
}
/**
* @pre vdev != NULL
* @pre vdev->vpci != NULL
* @pre vdev->vpci->vm != NULL
* bar write access must be 4 bytes and offset must also be 4 bytes aligned, it will be dropped otherwise
*/
int32_t vdev_pt_write_cfg(struct pci_vdev *vdev, uint32_t offset, uint32_t bytes, uint32_t val)
{
int32_t ret = -ENODEV;
/* bar write access must be 4 bytes and offset must also be 4 bytes aligned */
if (is_prelaunched_vm(vdev->vpci->vm) && is_bar_offset(vdev->nr_bars, offset)
&& (bytes == 4U) && ((offset & 0x3U) == 0U)) {
vdev_pt_write_vbar(vdev, offset, val);
ret = 0;
}
return ret;
}
/**
* For bar emulation, currently only MMIO is supported and bar size cannot be greater than 4GB
* @pre bar != NULL
*/
static inline bool is_bar_supported(const struct pci_bar *bar)
{
return (is_mmio_bar(bar) && is_valid_bar_size(bar));
}
/**
* PCI base address register (bar) virtualization:
*
* Virtualize the PCI bars (up to 6 bars at byte offset 0x10~0x24 for type 0 PCI device,
* 2 bars at byte offset 0x10-0x14 for type 1 PCI device) of the PCI configuration space
* header.
*
* pbar: bar for the physical PCI device (pci_pdev), the value of pbar (hpa) is assigned
* by platform firmware during boot. It is assumed a valid hpa is always assigned to a
* mmio pbar, hypervisor shall not change the value of a pbar.
*
* vbar: for each pci_pdev, it has a virtual PCI device (pci_vdev) counterpart. pci_vdev
* virtualizes all the bars (called vbars). a vbar can be initialized by hypervisor by
* assigning a gpa to it; if vbar has a value of 0 (unassigned), guest may assign
* and program a gpa to it. The guest only sees the vbars, it will not see and can
* never change the pbars.
*
* Hypervisor traps guest changes to the mmio vbar (gpa) to establish ept mapping
* between vbar(gpa) and pbar(hpa). pbar should always align on 4K boundary.
*
* @pre vdev != NULL
* @pre vdev->vpci != NULL
* @pre vdev->vpci->vm != NULL
* @pre vdev->pdev != NULL
*/
void init_vdev_pt(struct pci_vdev *vdev)
{
uint32_t idx;
struct pci_bar *pbar, *vbar;
uint16_t pci_command;
vdev->nr_bars = vdev->pdev->nr_bars;
ASSERT(vdev->nr_bars > 0U, "vdev->nr_bars should be greater than 0!");
if (is_prelaunched_vm(vdev->vpci->vm)) {
for (idx = 0U; idx < vdev->nr_bars; idx++) {
pbar = &vdev->pdev->bar[idx];
vbar = &vdev->bar[idx];
vbar->base = 0UL;
if (is_bar_supported(pbar)) {
vbar->reg.value = pbar->reg.value;
vbar->reg.bits.mem.base = 0x0U; /* clear vbar base */
if (vbar->reg.bits.mem.type == 0x2U) {
/* Clear vbar 64-bit flag and set it to 32-bit */
vbar->reg.bits.mem.type = 0x0U;
}
/**
* If vbar->base is 0 (unassigned), Linux kernel will reprogram the vbar on
* its bar size boundary, so in order to ensure the MMIO vbar allocated by guest
* is 4k aligned, set its size to be 4K aligned.
*/
vbar->size = round_page_up(pbar->size);
/**
* Only 32-bit bar is supported for now so both PCIBAR_MEM32 and PCIBAR_MEM64
* are reported to guest as PCIBAR_MEM32
*/
vbar->type = PCIBAR_MEM32;
/* Set the new vbar base */
if (vdev->ptdev_config->vbar[idx] != 0UL) {
vdev_pt_write_vbar(vdev, pci_bar_offset(idx), (uint32_t)(vdev->ptdev_config->vbar[idx]));
}
} else {
vbar->reg.value = 0x0U;
vbar->size = 0UL;
vbar->type = PCIBAR_NONE;
}
}
pci_command = (uint16_t)pci_pdev_read_cfg(vdev->pdev->bdf, PCIR_COMMAND, 2U);
/* Disable INTX */
pci_command |= 0x400U;
pci_pdev_write_cfg(vdev->pdev->bdf, PCIR_COMMAND, 2U, pci_command);
}
}