feat: data preprocessing

This commit is contained in:
Zach Nussbaum 2023-05-01 21:38:46 +00:00
parent c9dd9152c3
commit 0c0a56acab
2 changed files with 126 additions and 0 deletions

View File

@ -0,0 +1,51 @@
import torch
def tokenize_inputs(config, tokenizer, examples, input_col, target_col):
max_length = config["max_length"]
# hacky backward compatible
different_eos = tokenizer.eos_token != "</s>"
out = {"labels": [], "input_ids": []}
for prompt, response in zip(examples[input_col], examples[target_col]):
if different_eos:
if response.count("</s> \n") > 0:
response = response.replace("</s> \n", f"{tokenizer.eos_token} \n")
prompt_len = len(tokenizer(prompt + "\n", return_tensors="pt")["input_ids"][0])
# hack if our prompt is super long
# we need to include some labels so we arbitrarily trunacate at max_length // 2
# if the length is too long
if prompt_len >= max_length // 2:
# if prompt is too long, truncate
# but make sure to truncate to at max 1024 tokens
new_len = min(max_length // 2, len(prompt) // 2)
prompt = prompt[:new_len]
# get new prompt length
prompt_len = tokenizer(prompt + "\n", return_tensors="pt", max_length=max_length // 2, truncation=True).input_ids.ne(tokenizer.pad_token_id).sum().item()
assert prompt_len <= max_length // 2, f"prompt length {prompt_len} exceeds max length {max_length}"
input_tokens = tokenizer(prompt + "\n" + response + tokenizer.eos_token,
truncation=True, max_length=max_length, return_tensors="pt")["input_ids"].squeeze()
labels = input_tokens.clone()
labels[:prompt_len] = -100
if len(labels) < max_length:
# pad to max_length with -100
labels = torch.cat([labels, torch.full((max_length - len(labels),), -100)])
assert (labels == -100).sum() < len(labels), f"Labels are all -100, something wrong. prompt length {prompt_len} exceeds max length {max_length}"
if (labels == -100).sum() == len(labels) - 1:
print(prompt)
print(response)
raise
input_tokens = tokenizer.pad({"input_ids": input_tokens}, padding="max_length", max_length=max_length)["input_ids"]
out["labels"].append(labels)
out["input_ids"].append(input_tokens)
out = {k: torch.stack(v) if isinstance(v, list) else v for k, v in out.items()}
return out

View File

@ -0,0 +1,75 @@
from datasets import load_dataset, Dataset
import os
from torch.utils.data import DataLoader
from .preprocess import tokenize_inputs
from transformers import DefaultDataCollator
def load_retrieval_augmented_data(config, tokenizer, split="train", split_dataset=True):
dataset_path = config["dataset_path"]
if os.path.exists(dataset_path):
dataset = Dataset.load_from_disk(dataset_path)
else:
dataset = load_dataset(dataset_path, split=split)
question_col = config["q_column"]
answer_col = config["a_column"]
encoder_column = config["encoder_column"]
if config["streaming"] is False:
kwargs = {"num_proc": config["num_proc"]}
else:
kwargs = {}
# strip any unneccessary whitespace
# there's one question that's includes a ton of whitespace
dataset = dataset.map(lambda ele: {question_col: [q.strip() for q in ele[question_col]]}, batched=True)
# in squad, the data is formatted where each ele in answers is a dict where the key text holds
# a list of the answer
dataset = dataset.map(lambda ele: {answer_col: [t["text"][0] for t in ele[answer_col]]}, batched=True)
dataset = dataset.map(
lambda ele: tokenize_inputs(config, tokenizer, ele, question_col, answer_col),
batched=True,
**kwargs
)
# tokenize inputs + labels in teacher-force format
# rename encoder hidden states if not already called that
if encoder_column != "encoder_hidden_states":
dataset = dataset.rename_column(encoder_column, "encoder_hidden_states")
columns_to_keep = ["input_ids", "labels", "encoder_hidden_states"]
col_names_to_rm = [col for col in dataset.column_names if col not in columns_to_keep]
dataset = dataset.remove_columns(col_names_to_rm)
if split_dataset:
dataset = dataset.train_test_split(test_size=config["pct_test"], seed=config["seed"])
train_dataset, val_dataset = dataset["train"], dataset["test"]
train_dataloader = DataLoader(
train_dataset,
batch_size=config["batch_size"],
collate_fn=DefaultDataCollator(),
)
val_dataloader = DataLoader(
val_dataset,
batch_size=config["batch_size"],
collate_fn=DefaultDataCollator(),
)
return train_dataloader, val_dataloader
else:
dataloader = DataLoader(
dataset,
batch_size=config["batch_size"],
collate_fn=DefaultDataCollator(),
)
return dataloader