mirror of
https://github.com/nomic-ai/gpt4all.git
synced 2025-06-12 08:57:32 +00:00
* new skeleton Signed-off-by: Max Cembalest <max@nomic.ai> * v3 docs Signed-off-by: Max Cembalest <max@nomic.ai> --------- Signed-off-by: Max Cembalest <max@nomic.ai>
48 lines
1.6 KiB
Markdown
48 lines
1.6 KiB
Markdown
# GPT4All Monitoring
|
|
|
|
GPT4All integrates with [OpenLIT](https://github.com/openlit/openlit) open telemetry instrumentation to perform real-time monitoring of your LLM application and hardware.
|
|
|
|
Monitoring can enhance your GPT4All deployment with auto-generated traces for
|
|
|
|
- performance metrics
|
|
|
|
- user interactions
|
|
|
|
- GPU metrics like utilization, memory, temperature, power usage
|
|
|
|
## Setup Monitoring
|
|
|
|
!!! note "Setup Monitoring"
|
|
|
|
With [OpenLIT](https://github.com/openlit/openlit), you can automatically monitor metrics for your LLM deployment:
|
|
|
|
```shell
|
|
pip install openlit
|
|
```
|
|
|
|
```python
|
|
from gpt4all import GPT4All
|
|
import openlit
|
|
|
|
openlit.init() # start
|
|
# openlit.init(collect_gpu_stats=True) # or, start with optional GPU monitoring
|
|
|
|
model = GPT4All(model_name='orca-mini-3b-gguf2-q4_0.gguf')
|
|
|
|
# Start a chat session and send queries
|
|
with model.chat_session():
|
|
response1 = model.generate(prompt='hello', temp=0)
|
|
response2 = model.generate(prompt='write me a short poem', temp=0)
|
|
response3 = model.generate(prompt='thank you', temp=0)
|
|
|
|
print(model.current_chat_session)
|
|
```
|
|
|
|
## OpenLIT UI
|
|
|
|
Connect to OpenLIT's UI to start exploring performance metrics. Visit the OpenLIT [Quickstart Guide](https://docs.openlit.io/latest/quickstart) for step-by-step details.
|
|
|
|
## Grafana, DataDog, & Other Integrations
|
|
|
|
If you use tools like , you can integrate the data collected by OpenLIT. For instructions on setting up these connections, check the OpenLIT [Connections Guide](https://docs.openlit.io/latest/connections/intro).
|