mirror of
				https://github.com/nomic-ai/gpt4all.git
				synced 2025-11-04 07:55:24 +00:00 
			
		
		
		
	* new skeleton Signed-off-by: Max Cembalest <max@nomic.ai> * v3 docs Signed-off-by: Max Cembalest <max@nomic.ai> --------- Signed-off-by: Max Cembalest <max@nomic.ai>
		
			
				
	
	
		
			29 lines
		
	
	
		
			1.5 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			29 lines
		
	
	
		
			1.5 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
# GPT4All Documentation
 | 
						|
 | 
						|
GPT4All runs large language models (LLMs) privately on everyday desktops & laptops. 
 | 
						|
 | 
						|
No API calls or GPUs required - you can just download the application and [get started](gpt4all_desktop/quickstart.md#quickstart).
 | 
						|
 | 
						|
!!! note "Desktop Application"
 | 
						|
    GPT4All runs LLMs as an application on your computer. Nomic's embedding models can bring information from your local documents and files into your chats. It's fast, on-device, and completely **private**.
 | 
						|
 | 
						|
    <div style="text-align: center; margin-top: 20px;">
 | 
						|
        [Download for Windows](https://gpt4all.io/installers/gpt4all-installer-win64.exe)     
 | 
						|
        [Download for Mac](https://gpt4all.io/installers/gpt4all-installer-darwin.dmg)     
 | 
						|
        [Download for Linux](https://gpt4all.io/installers/gpt4all-installer-linux.run)
 | 
						|
    </div>
 | 
						|
 | 
						|
!!! note "Python SDK"
 | 
						|
    Use GPT4All in Python to program with LLMs implemented with the [`llama.cpp`](https://github.com/ggerganov/llama.cpp) backend and [Nomic's C backend](https://github.com/nomic-ai/gpt4all/tree/main/gpt4all-backend). Nomic contributes to open source software like [`llama.cpp`](https://github.com/ggerganov/llama.cpp) to make LLMs accessible and efficient **for all**.
 | 
						|
 | 
						|
    ```bash
 | 
						|
    pip install gpt4all
 | 
						|
    ```
 | 
						|
 | 
						|
    ```python
 | 
						|
    from gpt4all import GPT4All
 | 
						|
    model = GPT4All("Meta-Llama-3-8B-Instruct.Q4_0.gguf") # downloads / loads a 4.66GB LLM
 | 
						|
    with model.chat_session():
 | 
						|
        print(model.generate("How can I run LLMs efficiently on my laptop?", max_tokens=1024))
 | 
						|
    ```
 |