mirror of
https://github.com/kata-containers/kata-containers.git
synced 2025-07-31 23:36:12 +00:00
Merge pull request #615 from Jimmy-Xu/add-nvidia-gpu-use-case
use-cases: Add documentation for using Nvidia GPU with Kata
This commit is contained in:
commit
bc22bb8d7d
@ -1,274 +1,6 @@
|
||||
# Using Intel GPU device with Kata Containers
|
||||
# Using GPUs with Kata Containers
|
||||
|
||||
- [Using Intel GPU device with Kata Containers](#using-intel-gpu-device-with-kata-containers)
|
||||
- [Hardware Requirements](#hardware-requirements)
|
||||
- [Host Kernel Requirements](#host-kernel-requirements)
|
||||
- [Install and configure Kata Containers](#install-and-configure-kata-containers)
|
||||
- [Build Kata Containers kernel with GPU support](#build-kata-containers-kernel-with-gpu-support)
|
||||
- [GVT-d with Kata Containers](#gvt-d-with-kata-containers)
|
||||
- [GVT-g with Kata Containers](#gvt-g-with-kata-containers)
|
||||
Kata Containers supports passing certain GPUs from the host into the container. Select the GPU vendor for detailed information:
|
||||
|
||||
An Intel Graphics device can be passed to a Kata Containers container using GPU
|
||||
passthrough (Intel GVT-d) as well as GPU mediated passthrough (Intel GVT-g).
|
||||
|
||||
Intel GVT-d (one VM to one physical GPU) also named as Intel-Graphics-Device
|
||||
passthrough feature is one flavor of graphics virtualization approach.
|
||||
This flavor allows direct assignment of an entire GPU to a single user,
|
||||
passing the native driver capabilities through the hypervisor without any limitations.
|
||||
|
||||
Intel GVT-g (multiple VMs to one physical GPU) is a full GPU virtualization solution
|
||||
with mediated pass-through.<br/>
|
||||
A virtual GPU instance is maintained for each VM, with part of performance critical
|
||||
resources, directly assigned. The ability to run a native graphics driver inside a
|
||||
VM without hypervisor intervention in performance critical paths, achieves a good
|
||||
balance among performance, feature, and sharing capability.
|
||||
|
||||
| Technology | Description | Behaviour | Detail |
|
||||
|-|-|-|-|
|
||||
| Intel GVT-d | GPU passthrough | Physical GPU assigned to a single VM | Direct GPU assignment to VM without limitation |
|
||||
| Intel GVT-g | GPU sharing | Physical GPU shared by multiple VMs | Mediated passthrough |
|
||||
|
||||
## Hardware Requirements
|
||||
|
||||
- For client platforms, 5th generation Intel® Core Processor Graphics or higher are required.
|
||||
- For server platforms, E3_v4 or higher Xeon Processor Graphics are required.
|
||||
|
||||
The following steps outline the workflow for using an Intel Graphics device with Kata.
|
||||
|
||||
## Host Kernel Requirements
|
||||
|
||||
The following configurations need to be enabled on your host kernel:
|
||||
|
||||
```
|
||||
CONFIG_VFIO_IOMMU_TYPE1=m
|
||||
CONFIG_VFIO=m
|
||||
CONFIG_VFIO_PCI=m
|
||||
CONFIG_VFIO_MDEV=m
|
||||
CONFIG_VFIO_MDEV_DEVICE=m
|
||||
CONFIG_DRM_I915_GVT=m
|
||||
CONFIG_DRM_I915_GVT_KVMGT=m
|
||||
```
|
||||
|
||||
Your host kernel needs to be booted with `intel_iommu=on` on the kernel command
|
||||
line.
|
||||
|
||||
## Install and configure Kata Containers
|
||||
|
||||
To use this feature, you need Kata version 1.3.0 or above.
|
||||
Follow the [Kata Containers setup instructions](https://github.com/kata-containers/documentation/blob/master/install/README.md)
|
||||
to install the latest version of Kata.
|
||||
|
||||
In order to pass a GPU to a Kata Container, you need to enable the `hotplug_vfio_on_root_bus`
|
||||
configuration in the Kata `configuration.toml` file as shown below.
|
||||
|
||||
```
|
||||
$ sudo sed -i -e 's/^# *\(hotplug_vfio_on_root_bus\).*=.*$/\1 = true/g' /usr/share/defaults/kata-containers/configuration.toml
|
||||
```
|
||||
|
||||
Make sure you are using the `pc` machine type by verifying `machine_type = "pc"` is
|
||||
set in the `configuration.toml`.
|
||||
|
||||
## Build Kata Containers kernel with GPU support
|
||||
|
||||
The default guest kernel installed with Kata Containers does not provide GPU support.
|
||||
To use an Intel GPU with Kata Containers, you need to build a kernel with the necessary
|
||||
GPU support.
|
||||
|
||||
The following i915 kernel config options need to be enabled:
|
||||
```
|
||||
CONFIG_DRM=y
|
||||
CONFIG_DRM_I915=y
|
||||
CONFIG_DRM_I915_USERPTR=y
|
||||
```
|
||||
|
||||
Build the Kata Containers kernel with the previous config options, using the instructions
|
||||
described in [Building Kata Containers kernel](https://github.com/kata-containers/packaging/tree/master/kernel).
|
||||
For further details on building and installing guest kernels, see [the developer guide](https://github.com/kata-containers/documentation/blob/master/Developer-Guide.md#install-guest-kernel-images).
|
||||
|
||||
## GVT-d with Kata Containers
|
||||
|
||||
Use the following steps to pass an Intel Graphics device in GVT-d mode with Kata:
|
||||
|
||||
1. Find the Bus-Device-Function (BDF) for GPU device:
|
||||
|
||||
```
|
||||
$ sudo lspci -nn -D | grep Graphics
|
||||
0000:00:02.0 VGA compatible controller [0300]: Intel Corporation Broadwell-U Integrated Graphics [8086:1616] (rev 09)
|
||||
```
|
||||
|
||||
Run the previous command to determine the BDF for the GPU device on host.<br/>
|
||||
From the previous output, PCI address `0000:00:02.0` is assigned to the hardware GPU device.<br/>
|
||||
This BDF is used later to unbind the GPU device from the host.<br/>
|
||||
"8086 1616" is the device ID of the hardware GPU device. It is used later to
|
||||
rebind the GPU device to `vfio-pci` driver.
|
||||
|
||||
2. Find the IOMMU group for the GPU device:
|
||||
|
||||
```
|
||||
$ BDF="0000:00:02.0"
|
||||
$ readlink -e /sys/bus/pci/devices/$BDF/iommu_group
|
||||
/sys/kernel/iommu_groups/1
|
||||
```
|
||||
|
||||
The previous output shows that the GPU belongs to IOMMU group 1.
|
||||
|
||||
3. Unbind the GPU:
|
||||
|
||||
```
|
||||
$ echo $BDF | sudo tee /sys/bus/pci/devices/$BDF/driver/unbind
|
||||
```
|
||||
|
||||
4. Bind the GPU to the `vfio-pci` device driver:
|
||||
|
||||
```
|
||||
$ sudo modprobe vfio-pci
|
||||
$ echo 8086 1616 | sudo tee /sys/bus/pci/drivers/vfio-pci/new_id
|
||||
$ echo $BDF | sudo tee --append /sys/bus/pci/drivers/vfio-pci/bind
|
||||
```
|
||||
|
||||
After you run the previous commands, the GPU is bound to `vfio-pci` driver.<br/>
|
||||
A new directory with the IOMMU group number is created under `/dev/vfio`:
|
||||
|
||||
```
|
||||
$ ls -l /dev/vfio
|
||||
total 0
|
||||
crw------- 1 root root 241, 0 May 18 15:38 1
|
||||
crw-rw-rw- 1 root root 10, 196 May 18 15:37 vfio
|
||||
```
|
||||
|
||||
5. Start a Kata container with GPU device:
|
||||
|
||||
```
|
||||
$ sudo docker run -it --runtime=kata-runtime --rm --device /dev/vfio/1 -v /dev:/dev debian /bin/bash
|
||||
```
|
||||
|
||||
Run `lspci` within the container to verify the GPU device is seen in the list of
|
||||
the PCI devices. Note the vendor-device id of the GPU ("8086:1616") in the `lspci` output.
|
||||
|
||||
```
|
||||
$ lspci -nn -D
|
||||
0000:00:00.0 Class [0600]: Device [8086:1237] (rev 02)
|
||||
0000:00:01.0 Class [0601]: Device [8086:7000]
|
||||
0000:00:01.1 Class [0101]: Device [8086:7010]
|
||||
0000:00:01.3 Class [0680]: Device [8086:7113] (rev 03)
|
||||
0000:00:02.0 Class [0604]: Device [1b36:0001]
|
||||
0000:00:03.0 Class [0780]: Device [1af4:1003]
|
||||
0000:00:04.0 Class [0100]: Device [1af4:1004]
|
||||
0000:00:05.0 Class [0002]: Device [1af4:1009]
|
||||
0000:00:06.0 Class [0200]: Device [1af4:1000]
|
||||
0000:00:0f.0 Class [0300]: Device [8086:1616] (rev 09)
|
||||
```
|
||||
|
||||
Additionally, you can access the device node for the graphics device:
|
||||
|
||||
```
|
||||
$ ls /dev/dri
|
||||
card0 renderD128
|
||||
```
|
||||
|
||||
## GVT-g with Kata Containers
|
||||
|
||||
For GVT-g, you append `i915.enable_gvt=1` in addition to `intel_iommu=on`
|
||||
on your host kernel command line and then reboot your host.
|
||||
|
||||
Use the following steps to pass an Intel Graphics device in GVT-g mode to a Kata Container:
|
||||
|
||||
1. Find the BDF for GPU device:
|
||||
|
||||
```
|
||||
$ sudo lspci -nn -D | grep Graphics
|
||||
0000:00:02.0 VGA compatible controller [0300]: Intel Corporation Broadwell-U Integrated Graphics [8086:1616] (rev 09)
|
||||
```
|
||||
|
||||
Run the previous command to find out the BDF for the GPU device on host.
|
||||
The previous output shows PCI address "0000:00:02.0" is assigned to the GPU device.
|
||||
|
||||
2. Choose the MDEV (Mediated Device) type for VGPU (Virtual GPU):
|
||||
|
||||
For background on `mdev` types, please follow this [kernel documentation](https://github.com/torvalds/linux/blob/master/Documentation/vfio-mediated-device.txt).
|
||||
|
||||
* List out the `mdev` types for the VGPU:
|
||||
|
||||
```
|
||||
$ BDF="0000:00:02.0"
|
||||
|
||||
$ ls /sys/devices/pci0000:00/$BDF/mdev_supported_types
|
||||
i915-GVTg_V4_1 i915-GVTg_V4_2 i915-GVTg_V4_4 i915-GVTg_V4_8
|
||||
```
|
||||
|
||||
* Inspect the `mdev` types and choose one that fits your requirement:
|
||||
|
||||
```
|
||||
$ cd /sys/devices/pci0000:00/0000:00:02.0/mdev_supported_types/i915-GVTg_V4_8 && ls
|
||||
available_instances create description device_api devices
|
||||
|
||||
$ cat description
|
||||
low_gm_size: 64MB
|
||||
high_gm_size: 384MB
|
||||
fence: 4
|
||||
resolution: 1024x768
|
||||
weight: 2
|
||||
|
||||
$ cat available_instances
|
||||
7
|
||||
```
|
||||
|
||||
The output of file `description` represents the GPU resources that are
|
||||
assigned to the VGPU with specified MDEV type.The output of file `available_instances`
|
||||
represents the remaining amount of VGPUs you can create with specified MDEV type.
|
||||
|
||||
3. Create a VGPU:
|
||||
|
||||
* Generate a UUID:
|
||||
|
||||
```
|
||||
$ gpu_uuid=$(uuid)
|
||||
```
|
||||
|
||||
* Write the UUID to the `create` file under the chosen `mdev` type:
|
||||
|
||||
```
|
||||
$ echo $(gpu_uuid) | sudo tee /sys/devices/pci0000:00/0000:00:02.0/mdev_supported_types/i915-GVTg_V4_8/create
|
||||
```
|
||||
|
||||
4. Find the IOMMU group for the VGPU:
|
||||
|
||||
```
|
||||
$ ls -la /sys/devices/pci0000:00/0000:00:02.0/mdev_supported_types/i915-GVTg_V4_8/devices/${gpu_uuid}/iommu_group
|
||||
lrwxrwxrwx 1 root root 0 May 18 14:35 devices/bbc4aafe-5807-11e8-a43e-03533cceae7d/iommu_group -> ../../../../kernel/iommu_groups/0
|
||||
|
||||
$ ls -l /dev/vfio
|
||||
total 0
|
||||
crw------- 1 root root 241, 0 May 18 11:30 0
|
||||
crw-rw-rw- 1 root root 10, 196 May 18 11:29 vfio
|
||||
```
|
||||
|
||||
The IOMMU group "0" is created from the previous output.<br/>
|
||||
Now you can use the device node `/dev/vfio/0` in docker command line to pass
|
||||
the VGPU to a Kata Container.
|
||||
|
||||
5. Start Kata container with GPU device enabled:
|
||||
|
||||
```
|
||||
$ sudo docker run -it --runtime=kata-runtime --rm --device /dev/vfio/0 -v /dev:/dev debian /bin/bash
|
||||
$ lspci -nn -D
|
||||
0000:00:00.0 Class [0600]: Device [8086:1237] (rev 02)
|
||||
0000:00:01.0 Class [0601]: Device [8086:7000]
|
||||
0000:00:01.1 Class [0101]: Device [8086:7010]
|
||||
0000:00:01.3 Class [0680]: Device [8086:7113] (rev 03)
|
||||
0000:00:02.0 Class [0604]: Device [1b36:0001]
|
||||
0000:00:03.0 Class [0780]: Device [1af4:1003]
|
||||
0000:00:04.0 Class [0100]: Device [1af4:1004]
|
||||
0000:00:05.0 Class [0002]: Device [1af4:1009]
|
||||
0000:00:06.0 Class [0200]: Device [1af4:1000]
|
||||
0000:00:0f.0 Class [0300]: Device [8086:1616] (rev 09)
|
||||
```
|
||||
|
||||
BDF "0000:00:0f.0" is assigned to the VGPU device.
|
||||
|
||||
Additionally, you can access the device node for the graphics device:
|
||||
|
||||
```
|
||||
$ ls /dev/dri
|
||||
card0 renderD128
|
||||
```
|
||||
- [Intel](Intel-GPU-passthrough-and-Kata.md)
|
||||
- [Nvidia](Nvidia-GPU-passthrough-and-Kata.md)
|
||||
|
295
use-cases/Intel-GPU-passthrough-and-Kata.md
Normal file
295
use-cases/Intel-GPU-passthrough-and-Kata.md
Normal file
@ -0,0 +1,295 @@
|
||||
# Using Intel GPU device with Kata Containers
|
||||
|
||||
- [Using Intel GPU device with Kata Containers](#using-intel-gpu-device-with-kata-containers)
|
||||
- [Hardware Requirements](#hardware-requirements)
|
||||
- [Host Kernel Requirements](#host-kernel-requirements)
|
||||
- [Install and configure Kata Containers](#install-and-configure-kata-containers)
|
||||
- [Build Kata Containers kernel with GPU support](#build-kata-containers-kernel-with-gpu-support)
|
||||
- [GVT-d with Kata Containers](#gvt-d-with-kata-containers)
|
||||
- [GVT-g with Kata Containers](#gvt-g-with-kata-containers)
|
||||
|
||||
An Intel Graphics device can be passed to a Kata Containers container using GPU
|
||||
passthrough (Intel GVT-d) as well as GPU mediated passthrough (Intel GVT-g).
|
||||
|
||||
Intel GVT-d (one VM to one physical GPU) also named as Intel-Graphics-Device
|
||||
passthrough feature is one flavor of graphics virtualization approach.
|
||||
This flavor allows direct assignment of an entire GPU to a single user,
|
||||
passing the native driver capabilities through the hypervisor without any limitations.
|
||||
|
||||
Intel GVT-g (multiple VMs to one physical GPU) is a full GPU virtualization solution
|
||||
with mediated pass-through.<br/>
|
||||
A virtual GPU instance is maintained for each VM, with part of performance critical
|
||||
resources, directly assigned. The ability to run a native graphics driver inside a
|
||||
VM without hypervisor intervention in performance critical paths, achieves a good
|
||||
balance among performance, feature, and sharing capability.
|
||||
|
||||
| Technology | Description | Behaviour | Detail |
|
||||
|-|-|-|-|
|
||||
| Intel GVT-d | GPU passthrough | Physical GPU assigned to a single VM | Direct GPU assignment to VM without limitation |
|
||||
| Intel GVT-g | GPU sharing | Physical GPU shared by multiple VMs | Mediated passthrough |
|
||||
|
||||
## Hardware Requirements
|
||||
|
||||
- For client platforms, 5th generation Intel® Core Processor Graphics or higher are required.
|
||||
- For server platforms, E3_v4 or higher Xeon Processor Graphics are required.
|
||||
|
||||
The following steps outline the workflow for using an Intel Graphics device with Kata.
|
||||
|
||||
## Host Kernel Requirements
|
||||
|
||||
The following configurations need to be enabled on your host kernel:
|
||||
|
||||
```
|
||||
CONFIG_VFIO_IOMMU_TYPE1=m
|
||||
CONFIG_VFIO=m
|
||||
CONFIG_VFIO_PCI=m
|
||||
CONFIG_VFIO_MDEV=m
|
||||
CONFIG_VFIO_MDEV_DEVICE=m
|
||||
CONFIG_DRM_I915_GVT=m
|
||||
CONFIG_DRM_I915_GVT_KVMGT=m
|
||||
```
|
||||
|
||||
Your host kernel needs to be booted with `intel_iommu=on` on the kernel command
|
||||
line.
|
||||
|
||||
## Install and configure Kata Containers
|
||||
|
||||
To use this feature, you need Kata version 1.3.0 or above.
|
||||
Follow the [Kata Containers setup instructions](https://github.com/kata-containers/documentation/blob/master/install/README.md)
|
||||
to install the latest version of Kata.
|
||||
|
||||
In order to pass a GPU to a Kata Container, you need to enable the `hotplug_vfio_on_root_bus`
|
||||
configuration in the Kata `configuration.toml` file as shown below.
|
||||
|
||||
```
|
||||
$ sudo sed -i -e 's/^# *\(hotplug_vfio_on_root_bus\).*=.*$/\1 = true/g' /usr/share/defaults/kata-containers/configuration.toml
|
||||
```
|
||||
|
||||
Make sure you are using the `pc` machine type by verifying `machine_type = "pc"` is
|
||||
set in the `configuration.toml`.
|
||||
|
||||
## Build Kata Containers kernel with GPU support
|
||||
|
||||
The default guest kernel installed with Kata Containers does not provide GPU support.
|
||||
To use an Intel GPU with Kata Containers, you need to build a kernel with the necessary
|
||||
GPU support.
|
||||
|
||||
The following i915 kernel config options need to be enabled:
|
||||
```
|
||||
CONFIG_DRM=y
|
||||
CONFIG_DRM_I915=y
|
||||
CONFIG_DRM_I915_USERPTR=y
|
||||
```
|
||||
|
||||
Build the Kata Containers kernel with the previous config options, using the instructions
|
||||
described in [Building Kata Containers kernel](https://github.com/kata-containers/packaging/tree/master/kernel).
|
||||
For further details on building and installing guest kernels, see [the developer guide](https://github.com/kata-containers/documentation/blob/master/Developer-Guide.md#install-guest-kernel-images).
|
||||
|
||||
There is an easy way to build a guest kernel that supports Intel GPU:
|
||||
```
|
||||
## Build guest kernel with https://github.com/kata-containers/packaging/tree/master/kernel
|
||||
|
||||
# Prepare (download guest kernel source, generate .config)
|
||||
$ ./build-kernel.sh -g intel -f setup
|
||||
|
||||
# Build guest kernel
|
||||
$ ./build-kernel.sh -g intel build
|
||||
|
||||
# Install guest kernel
|
||||
$ sudo -E ./build-kernel.sh -g intel install
|
||||
/usr/share/kata-containers/vmlinux-intel-gpu.container -> vmlinux-5.4.15-70-intel-gpu
|
||||
/usr/share/kata-containers/vmlinuz-intel-gpu.container -> vmlinuz-5.4.15-70-intel-gpu
|
||||
```
|
||||
|
||||
Before using the new guest kernel, please update the `kernel` parameters in `configuration.toml`.
|
||||
```
|
||||
kernel = "/usr/share/kata-containers/vmlinuz-intel-gpu.container"
|
||||
```
|
||||
|
||||
## GVT-d with Kata Containers
|
||||
|
||||
Use the following steps to pass an Intel Graphics device in GVT-d mode with Kata:
|
||||
|
||||
1. Find the Bus-Device-Function (BDF) for GPU device:
|
||||
|
||||
```
|
||||
$ sudo lspci -nn -D | grep Graphics
|
||||
0000:00:02.0 VGA compatible controller [0300]: Intel Corporation Broadwell-U Integrated Graphics [8086:1616] (rev 09)
|
||||
```
|
||||
|
||||
Run the previous command to determine the BDF for the GPU device on host.<br/>
|
||||
From the previous output, PCI address `0000:00:02.0` is assigned to the hardware GPU device.<br/>
|
||||
This BDF is used later to unbind the GPU device from the host.<br/>
|
||||
"8086 1616" is the device ID of the hardware GPU device. It is used later to
|
||||
rebind the GPU device to `vfio-pci` driver.
|
||||
|
||||
2. Find the IOMMU group for the GPU device:
|
||||
|
||||
```
|
||||
$ BDF="0000:00:02.0"
|
||||
$ readlink -e /sys/bus/pci/devices/$BDF/iommu_group
|
||||
/sys/kernel/iommu_groups/1
|
||||
```
|
||||
|
||||
The previous output shows that the GPU belongs to IOMMU group 1.
|
||||
|
||||
3. Unbind the GPU:
|
||||
|
||||
```
|
||||
$ echo $BDF | sudo tee /sys/bus/pci/devices/$BDF/driver/unbind
|
||||
```
|
||||
|
||||
4. Bind the GPU to the `vfio-pci` device driver:
|
||||
|
||||
```
|
||||
$ sudo modprobe vfio-pci
|
||||
$ echo 8086 1616 | sudo tee /sys/bus/pci/drivers/vfio-pci/new_id
|
||||
$ echo $BDF | sudo tee --append /sys/bus/pci/drivers/vfio-pci/bind
|
||||
```
|
||||
|
||||
After you run the previous commands, the GPU is bound to `vfio-pci` driver.<br/>
|
||||
A new directory with the IOMMU group number is created under `/dev/vfio`:
|
||||
|
||||
```
|
||||
$ ls -l /dev/vfio
|
||||
total 0
|
||||
crw------- 1 root root 241, 0 May 18 15:38 1
|
||||
crw-rw-rw- 1 root root 10, 196 May 18 15:37 vfio
|
||||
```
|
||||
|
||||
5. Start a Kata container with GPU device:
|
||||
|
||||
```
|
||||
$ sudo docker run -it --runtime=kata-runtime --rm --device /dev/vfio/1 -v /dev:/dev debian /bin/bash
|
||||
```
|
||||
|
||||
Run `lspci` within the container to verify the GPU device is seen in the list of
|
||||
the PCI devices. Note the vendor-device id of the GPU ("8086:1616") in the `lspci` output.
|
||||
|
||||
```
|
||||
$ lspci -nn -D
|
||||
0000:00:00.0 Class [0600]: Device [8086:1237] (rev 02)
|
||||
0000:00:01.0 Class [0601]: Device [8086:7000]
|
||||
0000:00:01.1 Class [0101]: Device [8086:7010]
|
||||
0000:00:01.3 Class [0680]: Device [8086:7113] (rev 03)
|
||||
0000:00:02.0 Class [0604]: Device [1b36:0001]
|
||||
0000:00:03.0 Class [0780]: Device [1af4:1003]
|
||||
0000:00:04.0 Class [0100]: Device [1af4:1004]
|
||||
0000:00:05.0 Class [0002]: Device [1af4:1009]
|
||||
0000:00:06.0 Class [0200]: Device [1af4:1000]
|
||||
0000:00:0f.0 Class [0300]: Device [8086:1616] (rev 09)
|
||||
```
|
||||
|
||||
Additionally, you can access the device node for the graphics device:
|
||||
|
||||
```
|
||||
$ ls /dev/dri
|
||||
card0 renderD128
|
||||
```
|
||||
|
||||
## GVT-g with Kata Containers
|
||||
|
||||
For GVT-g, you append `i915.enable_gvt=1` in addition to `intel_iommu=on`
|
||||
on your host kernel command line and then reboot your host.
|
||||
|
||||
Use the following steps to pass an Intel Graphics device in GVT-g mode to a Kata Container:
|
||||
|
||||
1. Find the BDF for GPU device:
|
||||
|
||||
```
|
||||
$ sudo lspci -nn -D | grep Graphics
|
||||
0000:00:02.0 VGA compatible controller [0300]: Intel Corporation Broadwell-U Integrated Graphics [8086:1616] (rev 09)
|
||||
```
|
||||
|
||||
Run the previous command to find out the BDF for the GPU device on host.
|
||||
The previous output shows PCI address "0000:00:02.0" is assigned to the GPU device.
|
||||
|
||||
2. Choose the MDEV (Mediated Device) type for VGPU (Virtual GPU):
|
||||
|
||||
For background on `mdev` types, please follow this [kernel documentation](https://github.com/torvalds/linux/blob/master/Documentation/driver-api/vfio-mediated-device.rst).
|
||||
|
||||
* List out the `mdev` types for the VGPU:
|
||||
|
||||
```
|
||||
$ BDF="0000:00:02.0"
|
||||
|
||||
$ ls /sys/devices/pci0000:00/$BDF/mdev_supported_types
|
||||
i915-GVTg_V4_1 i915-GVTg_V4_2 i915-GVTg_V4_4 i915-GVTg_V4_8
|
||||
```
|
||||
|
||||
* Inspect the `mdev` types and choose one that fits your requirement:
|
||||
|
||||
```
|
||||
$ cd /sys/devices/pci0000:00/0000:00:02.0/mdev_supported_types/i915-GVTg_V4_8 && ls
|
||||
available_instances create description device_api devices
|
||||
|
||||
$ cat description
|
||||
low_gm_size: 64MB
|
||||
high_gm_size: 384MB
|
||||
fence: 4
|
||||
resolution: 1024x768
|
||||
weight: 2
|
||||
|
||||
$ cat available_instances
|
||||
7
|
||||
```
|
||||
|
||||
The output of file `description` represents the GPU resources that are
|
||||
assigned to the VGPU with specified MDEV type.The output of file `available_instances`
|
||||
represents the remaining amount of VGPUs you can create with specified MDEV type.
|
||||
|
||||
3. Create a VGPU:
|
||||
|
||||
* Generate a UUID:
|
||||
|
||||
```
|
||||
$ gpu_uuid=$(uuid)
|
||||
```
|
||||
|
||||
* Write the UUID to the `create` file under the chosen `mdev` type:
|
||||
|
||||
```
|
||||
$ echo $(gpu_uuid) | sudo tee /sys/devices/pci0000:00/0000:00:02.0/mdev_supported_types/i915-GVTg_V4_8/create
|
||||
```
|
||||
|
||||
4. Find the IOMMU group for the VGPU:
|
||||
|
||||
```
|
||||
$ ls -la /sys/devices/pci0000:00/0000:00:02.0/mdev_supported_types/i915-GVTg_V4_8/devices/${gpu_uuid}/iommu_group
|
||||
lrwxrwxrwx 1 root root 0 May 18 14:35 devices/bbc4aafe-5807-11e8-a43e-03533cceae7d/iommu_group -> ../../../../kernel/iommu_groups/0
|
||||
|
||||
$ ls -l /dev/vfio
|
||||
total 0
|
||||
crw------- 1 root root 241, 0 May 18 11:30 0
|
||||
crw-rw-rw- 1 root root 10, 196 May 18 11:29 vfio
|
||||
```
|
||||
|
||||
The IOMMU group "0" is created from the previous output.<br/>
|
||||
Now you can use the device node `/dev/vfio/0` in docker command line to pass
|
||||
the VGPU to a Kata Container.
|
||||
|
||||
5. Start Kata container with GPU device enabled:
|
||||
|
||||
```
|
||||
$ sudo docker run -it --runtime=kata-runtime --rm --device /dev/vfio/0 -v /dev:/dev debian /bin/bash
|
||||
$ lspci -nn -D
|
||||
0000:00:00.0 Class [0600]: Device [8086:1237] (rev 02)
|
||||
0000:00:01.0 Class [0601]: Device [8086:7000]
|
||||
0000:00:01.1 Class [0101]: Device [8086:7010]
|
||||
0000:00:01.3 Class [0680]: Device [8086:7113] (rev 03)
|
||||
0000:00:02.0 Class [0604]: Device [1b36:0001]
|
||||
0000:00:03.0 Class [0780]: Device [1af4:1003]
|
||||
0000:00:04.0 Class [0100]: Device [1af4:1004]
|
||||
0000:00:05.0 Class [0002]: Device [1af4:1009]
|
||||
0000:00:06.0 Class [0200]: Device [1af4:1000]
|
||||
0000:00:0f.0 Class [0300]: Device [8086:1616] (rev 09)
|
||||
```
|
||||
|
||||
BDF "0000:00:0f.0" is assigned to the VGPU device.
|
||||
|
||||
Additionally, you can access the device node for the graphics device:
|
||||
|
||||
```
|
||||
$ ls /dev/dri
|
||||
card0 renderD128
|
||||
```
|
313
use-cases/Nvidia-GPU-passthrough-and-Kata.md
Normal file
313
use-cases/Nvidia-GPU-passthrough-and-Kata.md
Normal file
@ -0,0 +1,313 @@
|
||||
# Using Nvidia GPU device with Kata Containers
|
||||
|
||||
- [Using Nvidia GPU device with Kata Containers](#using-nvidia-gpu-device-with-kata-containers)
|
||||
- [Hardware Requirements](#hardware-requirements)
|
||||
- [Host BIOS Requirements](#host-bios-requirements)
|
||||
- [Host Kernel Requirements](#host-kernel-requirements)
|
||||
- [Install and configure Kata Containers](#install-and-configure-kata-containers)
|
||||
- [Build Kata Containers kernel with GPU support](#build-kata-containers-kernel-with-gpu-support)
|
||||
- [Nvidia GPU pass-through mode with Kata Containers](#nvidia-gpu-pass-through-mode-with-kata-containers)
|
||||
- [Nvidia vGPU mode with Kata Containers](#nvidia-vgpu-mode-with-kata-containers)
|
||||
- [Install Nvidia Driver in Kata Containers](#install-nvidia-driver-in-kata-containers)
|
||||
- [References](#references)
|
||||
|
||||
|
||||
An Nvidia GPU device can be passed to a Kata Containers container using GPU passthrough
|
||||
(Nvidia GPU pass-through mode) as well as GPU mediated passthrough (Nvidia vGPU mode).
|
||||
|
||||
Nvidia GPU pass-through mode, an entire physical GPU is directly assigned to one VM,
|
||||
bypassing the Nvidia Virtual GPU Manager. In this mode of operation, the GPU is accessed
|
||||
exclusively by the Nvidia driver running in the VM to which it is assigned.
|
||||
The GPU is not shared among VMs.
|
||||
|
||||
Nvidia Virtual GPU (vGPU) enables multiple virtual machines (VMs) to have simultaneous,
|
||||
direct access to a single physical GPU, using the same Nvidia graphics drivers that are
|
||||
deployed on non-virtualized operating systems. By doing this, Nvidia vGPU provides VMs
|
||||
with unparalleled graphics performance, compute performance, and application compatibility,
|
||||
together with the cost-effectiveness and scalability brought about by sharing a GPU
|
||||
among multiple workloads.
|
||||
|
||||
| Technology | Description | Behaviour | Detail |
|
||||
| --- | --- | --- | --- |
|
||||
| Nvidia GPU pass-through mode | GPU passthrough | Physical GPU assigned to a single VM | Direct GPU assignment to VM without limitation |
|
||||
| Nvidia vGPU mode | GPU sharing | Physical GPU shared by multiple VMs | Mediated passthrough |
|
||||
|
||||
## Hardware Requirements
|
||||
Nvidia GPUs Recommended for Virtualization:
|
||||
|
||||
- Nvidia Tesla (T4, M10, P6, V100 or newer)
|
||||
- Nvidia Quadro RTX 6000/8000
|
||||
|
||||
## Host BIOS Requirements
|
||||
|
||||
Some hardware requires a larger PCI BARs window, for example, Nvidia Tesla P100, K40m
|
||||
```
|
||||
$ lspci -s 04:00.0 -vv | grep Region
|
||||
Region 0: Memory at c6000000 (32-bit, non-prefetchable) [size=16M]
|
||||
Region 1: Memory at 383800000000 (64-bit, prefetchable) [size=16G] #above 4G
|
||||
Region 3: Memory at 383c00000000 (64-bit, prefetchable) [size=32M]
|
||||
```
|
||||
|
||||
For large BARs devices, MMIO mapping above 4G address space should be `enabled`
|
||||
in the PCI configuration of the BIOS.
|
||||
|
||||
Some hardware vendors use different name in BIOS, such as:
|
||||
|
||||
- Above 4G Decoding
|
||||
- Memory Hole for PCI MMIO
|
||||
- Memory Mapped I/O above 4GB
|
||||
|
||||
The following steps outline the workflow for using an Nvidia GPU with Kata.
|
||||
|
||||
## Host Kernel Requirements
|
||||
The following configurations need to be enabled on your host kernel:
|
||||
|
||||
- `CONFIG_VFIO`
|
||||
- `CONFIG_VFIO_IOMMU_TYPE1`
|
||||
- `CONFIG_VFIO_MDEV`
|
||||
- `CONFIG_VFIO_MDEV_DEVICE`
|
||||
- `CONFIG_VFIO_PCI`
|
||||
|
||||
Your host kernel needs to be booted with `intel_iommu=on` on the kernel command line.
|
||||
|
||||
## Install and configure Kata Containers
|
||||
To use non-large BARs devices (for example, Nvidia Tesla T4), you need Kata version 1.3.0 or above.
|
||||
Follow the [Kata Containers setup instructions](https://github.com/kata-containers/documentation/blob/master/install/README.md)
|
||||
to install the latest version of Kata.
|
||||
|
||||
The following configuration in the Kata `configuration.toml` file as shown below can work:
|
||||
```
|
||||
machine_type = "pc"
|
||||
|
||||
hotplug_vfio_on_root_bus = true
|
||||
```
|
||||
|
||||
To use large BARs devices (for example, Nvidia Tesla P100), you need Kata version 1.11.0 or above.
|
||||
|
||||
The following configuration in the Kata `configuration.toml` file as shown below can work:
|
||||
|
||||
Hotplug for PCI devices by `shpchp` (Linux's SHPC PCI Hotplug driver):
|
||||
```
|
||||
machine_type = "q35"
|
||||
|
||||
hotplug_vfio_on_root_bus = false
|
||||
```
|
||||
|
||||
Hotplug for PCIe devices by `pciehp` (Linux's PCIe Hotplug driver):
|
||||
```
|
||||
machine_type = "q35"
|
||||
|
||||
hotplug_vfio_on_root_bus = true
|
||||
pcie_root_port = 1
|
||||
```
|
||||
|
||||
## Build Kata Containers kernel with GPU support
|
||||
The default guest kernel installed with Kata Containers does not provide GPU support.
|
||||
To use an Nvidia GPU with Kata Containers, you need to build a kernel with the
|
||||
necessary GPU support.
|
||||
|
||||
The following kernel config options need to be enabled:
|
||||
```
|
||||
# Support PCI/PCIe device hotplug (Required for large BARs device)
|
||||
CONFIG_HOTPLUG_PCI_PCIE=y
|
||||
CONFIG_HOTPLUG_PCI_SHPC=y
|
||||
|
||||
# Support for loading modules (Required for load Nvidia drivers)
|
||||
CONFIG_MODULES=y
|
||||
CONFIG_MODULE_UNLOAD=y
|
||||
|
||||
# Enable the MMIO access method for PCIe devices (Required for large BARs device)
|
||||
CONFIG_PCI_MMCONFIG=y
|
||||
```
|
||||
|
||||
The following kernel config options need to be disabled:
|
||||
```
|
||||
# Disable Open Source Nvidia driver nouveau
|
||||
# It conflicts with Nvidia official driver
|
||||
CONFIG_DRM_NOUVEAU=n
|
||||
```
|
||||
> **Note**: `CONFIG_DRM_NOUVEAU` is normally disabled by default.
|
||||
It is worth checking that it is not enabled in your kernel configuration to prevent any conflicts.
|
||||
|
||||
|
||||
Build the Kata Containers kernel with the previous config options,
|
||||
using the instructions described in [Building Kata Containers kernel](https://github.com/kata-containers/packaging/tree/master/kernel).
|
||||
For further details on building and installing guest kernels,
|
||||
see [the developer guide](https://github.com/kata-containers/documentation/blob/master/Developer-Guide.md#install-guest-kernel-images).
|
||||
|
||||
There is an easy way to build a guest kernel that supports Nvidia GPU:
|
||||
```
|
||||
## Build guest kernel with https://github.com/kata-containers/packaging/tree/master/kernel
|
||||
|
||||
# Prepare (download guest kernel source, generate .config)
|
||||
$ ./build-kernel.sh -v 4.19.86 -g nvidia -f setup
|
||||
|
||||
# Build guest kernel
|
||||
$ ./build-kernel.sh -v 4.19.86 -g nvidia build
|
||||
|
||||
# Install guest kernel
|
||||
$ sudo -E ./build-kernel.sh -v 4.19.86 -g nvidia install
|
||||
/usr/share/kata-containers/vmlinux-nvidia-gpu.container -> vmlinux-4.19.86-70-nvidia-gpu
|
||||
/usr/share/kata-containers/vmlinuz-nvidia-gpu.container -> vmlinuz-4.19.86-70-nvidia-gpu
|
||||
```
|
||||
|
||||
To build Nvidia Driver in Kata container, `kernel-devel` is required.
|
||||
This is a way to generate rpm packages for `kernel-devel`:
|
||||
```
|
||||
$ cd kata-linux-4.19.86-68
|
||||
$ make rpm-pkg
|
||||
Output RPMs:
|
||||
~/rpmbuild/RPMS/x86_64/kernel-devel-4.19.86_nvidia_gpu-1.x86_64.rpm
|
||||
```
|
||||
> **Note**:
|
||||
> - `kernel-devel` should be installed in Kata container before run Nvidia driver installer.
|
||||
> - Run `make deb-pkg` to build the deb package.
|
||||
|
||||
Before using the new guest kernel, please update the `kernel` parameters in `configuration.toml`.
|
||||
```
|
||||
kernel = "/usr/share/kata-containers/vmlinuz-nvidia-gpu.container"
|
||||
```
|
||||
|
||||
## Nvidia GPU pass-through mode with Kata Containers
|
||||
Use the following steps to pass an Nvidia GPU device in pass-through mode with Kata:
|
||||
|
||||
1. Find the Bus-Device-Function (BDF) for GPU device on host:
|
||||
```
|
||||
$ sudo lspci -nn -D | grep -i nvidia
|
||||
0000:04:00.0 3D controller [0302]: NVIDIA Corporation Device [10de:15f8] (rev a1)
|
||||
0000:84:00.0 3D controller [0302]: NVIDIA Corporation Device [10de:15f8] (rev a1)
|
||||
```
|
||||
> PCI address `0000:04:00.0` is assigned to the hardware GPU device.
|
||||
> `10de:15f8` is the device ID of the hardware GPU device.
|
||||
|
||||
2. Find the IOMMU group for the GPU device:
|
||||
```
|
||||
$ BDF="0000:04:00.0"
|
||||
$ readlink -e /sys/bus/pci/devices/$BDF/iommu_group
|
||||
/sys/kernel/iommu_groups/45
|
||||
```
|
||||
The previous output shows that the GPU belongs to IOMMU group 45.
|
||||
|
||||
3. Check the IOMMU group number under `/dev/vfio`:
|
||||
```
|
||||
$ ls -l /dev/vfio
|
||||
total 0
|
||||
crw------- 1 root root 248, 0 Feb 28 09:57 45
|
||||
crw------- 1 root root 248, 1 Feb 28 09:57 54
|
||||
crw-rw-rw- 1 root root 10, 196 Feb 28 09:57 vfio
|
||||
```
|
||||
|
||||
4. Start a Kata container with GPU device:
|
||||
```
|
||||
$ sudo docker run -it --runtime=kata-runtime --rm --device /dev/vfio/45 centos /bin/bash
|
||||
```
|
||||
|
||||
5. Run `lspci` within the container to verify the GPU device is seen in the list
|
||||
of the PCI devices. Note the vendor-device id of the GPU (`10de:15f8`) in the `lspci` output.
|
||||
```
|
||||
$ lspci -nn -D | grep '10de:15f8'
|
||||
0000:01:01.0 3D controller [0302]: NVIDIA Corporation GP100GL [Tesla P100 PCIe 16GB] [10de:15f8] (rev a1)
|
||||
```
|
||||
|
||||
6. Additionally, you can check the PCI BARs space of the Nvidia GPU device in the container:
|
||||
```
|
||||
$ lspci -s 01:01.0 -vv | grep Region
|
||||
Region 0: Memory at c0000000 (32-bit, non-prefetchable) [disabled] [size=16M]
|
||||
Region 1: Memory at 4400000000 (64-bit, prefetchable) [disabled] [size=16G]
|
||||
Region 3: Memory at 4800000000 (64-bit, prefetchable) [disabled] [size=32M]
|
||||
```
|
||||
> **Note**: If you see a message similar to the above, the BAR space of the Nvidia
|
||||
> GPU has been successfully allocated.
|
||||
|
||||
## Nvidia vGPU mode with Kata Containers
|
||||
|
||||
Nvidia vGPU is a licensed product on all supported GPU boards. A software license
|
||||
is required to enable all vGPU features within the guest VM.
|
||||
|
||||
> **Note**: There is no suitable test environment, so it is not written here.
|
||||
|
||||
|
||||
## Install Nvidia Driver in Kata Containers
|
||||
Download the official Nvidia driver from
|
||||
[https://www.nvidia.com/Download/index.aspx](https://www.nvidia.com/Download/index.aspx),
|
||||
for example `NVIDIA-Linux-x86_64-418.87.01.run`.
|
||||
|
||||
Install the `kernel-devel`(generated in the previous steps) for guest kernel:
|
||||
```
|
||||
$ sudo rpm -ivh kernel-devel-4.19.86_gpu-1.x86_64.rpm
|
||||
```
|
||||
|
||||
Here is an example to extract, compile and install Nvidia driver:
|
||||
```
|
||||
## Extract
|
||||
$ sh ./NVIDIA-Linux-x86_64-418.87.01.run -x
|
||||
|
||||
## Compile and install (It will take some time)
|
||||
$ cd NVIDIA-Linux-x86_64-418.87.01
|
||||
$ sudo ./nvidia-installer -a -q --ui=none \
|
||||
--no-cc-version-check \
|
||||
--no-opengl-files --no-install-libglvnd \
|
||||
--kernel-source-path=/usr/src/kernels/`uname -r`
|
||||
```
|
||||
|
||||
Or just run one command line:
|
||||
```
|
||||
$ sudo sh ./NVIDIA-Linux-x86_64-418.87.01.run -a -q --ui=none \
|
||||
--no-cc-version-check \
|
||||
--no-opengl-files --no-install-libglvnd \
|
||||
--kernel-source-path=/usr/src/kernels/`uname -r`
|
||||
```
|
||||
|
||||
To view detailed logs of the installer:
|
||||
```
|
||||
$ tail -f /var/log/nvidia-installer.log
|
||||
```
|
||||
|
||||
Load Nvidia driver module manually
|
||||
```
|
||||
# Optional(generate modules.dep and map files for Nvidia driver)
|
||||
$ sudo depmod
|
||||
|
||||
# Load module
|
||||
$ sudo modprobe nvidia-drm
|
||||
|
||||
# Check module
|
||||
$ lsmod | grep nvidia
|
||||
nvidia_drm 45056 0
|
||||
nvidia_modeset 1093632 1 nvidia_drm
|
||||
nvidia 18202624 1 nvidia_modeset
|
||||
drm_kms_helper 159744 1 nvidia_drm
|
||||
drm 364544 3 nvidia_drm,drm_kms_helper
|
||||
i2c_core 65536 3 nvidia,drm_kms_helper,drm
|
||||
ipmi_msghandler 49152 1 nvidia
|
||||
```
|
||||
|
||||
|
||||
Check Nvidia device status with `nvidia-smi`
|
||||
```
|
||||
$ nvidia-smi
|
||||
Tue Mar 3 00:03:49 2020
|
||||
+-----------------------------------------------------------------------------+
|
||||
| NVIDIA-SMI 418.87.01 Driver Version: 418.87.01 CUDA Version: 10.1 |
|
||||
|-------------------------------+----------------------+----------------------+
|
||||
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
|
||||
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|
||||
|===============================+======================+======================|
|
||||
| 0 Tesla P100-PCIE... Off | 00000000:01:01.0 Off | 0 |
|
||||
| N/A 27C P0 25W / 250W | 0MiB / 16280MiB | 0% Default |
|
||||
+-------------------------------+----------------------+----------------------+
|
||||
|
||||
+-----------------------------------------------------------------------------+
|
||||
| Processes: GPU Memory |
|
||||
| GPU PID Type Process name Usage |
|
||||
|=============================================================================|
|
||||
| No running processes found |
|
||||
+-----------------------------------------------------------------------------+
|
||||
|
||||
```
|
||||
|
||||
## References
|
||||
|
||||
- [Configuring a VM for GPU Pass-Through by Using the QEMU Command Line](https://docs.nvidia.com/grid/latest/grid-vgpu-user-guide/index.html#using-gpu-pass-through-red-hat-el-qemu-cli)
|
||||
- https://gitlab.com/nvidia/container-images/driver/-/tree/master
|
||||
- https://github.com/NVIDIA/nvidia-docker/wiki/Driver-containers-(Beta)
|
Loading…
Reference in New Issue
Block a user