Merge pull request #18170 from xiang90/scale

api/resource: optimize scale function
This commit is contained in:
Wojciech Tyczynski 2015-12-09 16:18:28 +01:00
commit 029d906074
3 changed files with 182 additions and 4 deletions

View File

@ -382,8 +382,7 @@ func (q *Quantity) Value() int64 {
if q.Amount == nil {
return 0
}
tmp := &inf.Dec{}
return tmp.Round(q.Amount, 0, inf.RoundUp).UnscaledBig().Int64()
return scaledValue(q.Amount.UnscaledBig(), int(q.Amount.Scale()), 0)
}
// MilliValue returns the value of q * 1000; this could overflow an int64;
@ -392,8 +391,7 @@ func (q *Quantity) MilliValue() int64 {
if q.Amount == nil {
return 0
}
tmp := &inf.Dec{}
return tmp.Round(tmp.Mul(q.Amount, decThousand), 0, inf.RoundUp).UnscaledBig().Int64()
return scaledValue(q.Amount.UnscaledBig(), int(q.Amount.Scale()), 3)
}
// Set sets q's value to be value.

View File

@ -0,0 +1,95 @@
/*
Copyright 2015 The Kubernetes Authors All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package resource
import (
"math"
"math/big"
"sync"
)
var (
// A sync pool to reduce allocation.
intPool sync.Pool
maxInt64 = big.NewInt(math.MaxInt64)
)
func init() {
intPool.New = func() interface{} {
return &big.Int{}
}
}
// scaledValue scales given unscaled value from scale to new Scale and returns
// an int64. It ALWAYS rounds up the result when scale down. The final result might
// overflow.
//
// scale, newScale represents the scale of the unscaled decimal.
// The mathematical value of the decimal is unscaled * 10**(-scale).
func scaledValue(unscaled *big.Int, scale, newScale int) int64 {
dif := scale - newScale
if dif == 0 {
return unscaled.Int64()
}
// Handle scale up
// This is an easy case, we do not need to care about rounding and overflow.
// If any intermediate operation causes overflow, the result will overflow.
if dif < 0 {
return unscaled.Int64() * int64(math.Pow10(-dif))
}
// Handle scale down
// We have to be careful about the intermediate operations.
// fast path when unscaled < max.Int64 and exp(10,dif) < max.Int64
const log10MaxInt64 = 19
if unscaled.Cmp(maxInt64) < 0 && dif < log10MaxInt64 {
divide := int64(math.Pow10(dif))
result := unscaled.Int64() / divide
mod := unscaled.Int64() % divide
if mod != 0 {
return result + 1
}
return result
}
// We should only convert back to int64 when getting the result.
divisor := intPool.Get().(*big.Int)
exp := intPool.Get().(*big.Int)
result := intPool.Get().(*big.Int)
defer func() {
intPool.Put(divisor)
intPool.Put(exp)
intPool.Put(result)
}()
// divisor = 10^(dif)
// TODO: create loop up table if exp costs too much.
divisor.Exp(bigTen, exp.SetInt64(int64(dif)), nil)
// reuse exp
remainder := exp
// result = unscaled / divisor
// remainder = unscaled % divisor
result.DivMod(unscaled, divisor, remainder)
if remainder.Sign() != 0 {
return result.Int64() + 1
}
return result.Int64()
}

View File

@ -0,0 +1,85 @@
/*
Copyright 2015 The Kubernetes Authors All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package resource
import (
"math"
"math/big"
"testing"
)
func TestScaledValue(t *testing.T) {
tests := []struct {
unscaled *big.Int
scale int
newScale int
want int64
}{
// remain scale
{big.NewInt(1000), 0, 0, 1000},
// scale down
{big.NewInt(1000), 0, -3, 1},
{big.NewInt(1000), 3, 0, 1},
{big.NewInt(0), 3, 0, 0},
// always round up
{big.NewInt(999), 3, 0, 1},
{big.NewInt(500), 3, 0, 1},
{big.NewInt(499), 3, 0, 1},
{big.NewInt(1), 3, 0, 1},
// large scaled value does not lose precision
{big.NewInt(0).Sub(maxInt64, bigOne), 1, 0, (math.MaxInt64-1)/10 + 1},
// large intermidiate result.
{big.NewInt(1).Exp(big.NewInt(10), big.NewInt(100), nil), 100, 0, 1},
// scale up
{big.NewInt(0), 0, 3, 0},
{big.NewInt(1), 0, 3, 1000},
{big.NewInt(1), -3, 0, 1000},
{big.NewInt(1000), -3, 2, 100000000},
{big.NewInt(0).Div(big.NewInt(math.MaxInt64), bigThousand), 0, 3,
(math.MaxInt64 / 1000) * 1000},
}
for i, tt := range tests {
old := (&big.Int{}).Set(tt.unscaled)
got := scaledValue(tt.unscaled, tt.scale, tt.newScale)
if got != tt.want {
t.Errorf("#%d: got = %v, want %v", i, got, tt.want)
}
if tt.unscaled.Cmp(old) != 0 {
t.Errorf("#%d: unscaled = %v, want %v", i, tt.unscaled, old)
}
}
}
func BenchmarkScaledValueSmall(b *testing.B) {
s := big.NewInt(1000)
for i := 0; i < b.N; i++ {
scaledValue(s, 3, 0)
}
}
func BenchmarkScaledValueLarge(b *testing.B) {
s := big.NewInt(math.MaxInt64)
s.Mul(s, big.NewInt(1000))
for i := 0; i < b.N; i++ {
scaledValue(s, 10, 0)
}
}