mirror of
https://github.com/k3s-io/kubernetes.git
synced 2025-07-31 23:37:01 +00:00
Merge pull request #127462 from dims/automated-cherry-pick-of-#127423-#127456-upstream-release-1.31
Automated cherry pick of #127423: Add some simple tests for nvidia GPU(s) #127456: Install Nvidia Daemonset in test harness for GCE
This commit is contained in:
commit
1740b2ae7f
306
test/e2e/node/gpu.go
Normal file
306
test/e2e/node/gpu.go
Normal file
@ -0,0 +1,306 @@
|
||||
/*
|
||||
Copyright 2024 The Kubernetes Authors.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
*/
|
||||
|
||||
package node
|
||||
|
||||
import (
|
||||
"context"
|
||||
"os"
|
||||
"time"
|
||||
|
||||
appsv1 "k8s.io/api/apps/v1"
|
||||
v1 "k8s.io/api/core/v1"
|
||||
"k8s.io/apimachinery/pkg/api/resource"
|
||||
metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
|
||||
"k8s.io/apimachinery/pkg/util/uuid"
|
||||
clientset "k8s.io/client-go/kubernetes"
|
||||
extensionsinternal "k8s.io/kubernetes/pkg/apis/extensions"
|
||||
"k8s.io/kubernetes/test/e2e/feature"
|
||||
"k8s.io/kubernetes/test/e2e/framework"
|
||||
e2edebug "k8s.io/kubernetes/test/e2e/framework/debug"
|
||||
e2egpu "k8s.io/kubernetes/test/e2e/framework/gpu"
|
||||
e2emanifest "k8s.io/kubernetes/test/e2e/framework/manifest"
|
||||
e2enode "k8s.io/kubernetes/test/e2e/framework/node"
|
||||
e2epod "k8s.io/kubernetes/test/e2e/framework/pod"
|
||||
e2eresource "k8s.io/kubernetes/test/e2e/framework/resource"
|
||||
e2eskipper "k8s.io/kubernetes/test/e2e/framework/skipper"
|
||||
e2etestfiles "k8s.io/kubernetes/test/e2e/framework/testfiles"
|
||||
admissionapi "k8s.io/pod-security-admission/api"
|
||||
|
||||
"github.com/onsi/ginkgo/v2"
|
||||
"github.com/onsi/gomega"
|
||||
)
|
||||
|
||||
var _ = SIGDescribe(feature.GPUDevicePlugin, "Sanity test for Nvidia Device", func() {
|
||||
|
||||
f := framework.NewDefaultFramework("nvidia-gpu")
|
||||
f.NamespacePodSecurityLevel = admissionapi.LevelPrivileged
|
||||
var podClient *e2epod.PodClient
|
||||
|
||||
ginkgo.BeforeEach(func() {
|
||||
e2eskipper.SkipUnlessProviderIs("aws", "gce")
|
||||
podClient = e2epod.NewPodClient(f)
|
||||
})
|
||||
|
||||
f.It("should run nvidia-smi cli", func(ctx context.Context) {
|
||||
SetupEnvironmentAndSkipIfNeeded(ctx, f, f.ClientSet)
|
||||
pod := testNvidiaCLIPod()
|
||||
pod.Spec.Containers[0].Command = []string{"nvidia-smi"}
|
||||
|
||||
ginkgo.By("Creating a pod that runs nvidia-smi")
|
||||
createAndValidatePod(ctx, f, podClient, pod)
|
||||
|
||||
ginkgo.By("Getting logs from the pod")
|
||||
log, err := e2epod.GetPodLogs(ctx, f.ClientSet, f.Namespace.Name, pod.Name, pod.Spec.Containers[0].Name)
|
||||
framework.ExpectNoError(err)
|
||||
|
||||
ginkgo.By("Checking output from nvidia-smi")
|
||||
gomega.Expect(log).To(gomega.ContainSubstring("NVIDIA-SMI"))
|
||||
gomega.Expect(log).To(gomega.ContainSubstring("Driver Version:"))
|
||||
gomega.Expect(log).To(gomega.ContainSubstring("CUDA Version:"))
|
||||
})
|
||||
|
||||
f.It("should run gpu based matrix multiplication", func(ctx context.Context) {
|
||||
SetupEnvironmentAndSkipIfNeeded(ctx, f, f.ClientSet)
|
||||
pod := testMatrixMultiplicationPod()
|
||||
|
||||
ginkgo.By("Creating a pod that runs matrix multiplication")
|
||||
createAndValidatePod(ctx, f, podClient, pod)
|
||||
|
||||
ginkgo.By("Getting logs from the pod")
|
||||
log, err := e2epod.GetPodLogs(ctx, f.ClientSet, f.Namespace.Name, pod.Name, pod.Spec.Containers[0].Name)
|
||||
framework.ExpectNoError(err)
|
||||
|
||||
ginkgo.By("Checking output from nvidia-smi")
|
||||
gomega.Expect(log).To(gomega.ContainSubstring("TensorFlow version"))
|
||||
gomega.Expect(log).To(gomega.ContainSubstring("Matrix multiplication result:"))
|
||||
gomega.Expect(log).To(gomega.ContainSubstring("Time taken for 5000x5000 matrix multiplication"))
|
||||
})
|
||||
})
|
||||
|
||||
func createAndValidatePod(ctx context.Context, f *framework.Framework, podClient *e2epod.PodClient, pod *v1.Pod) {
|
||||
pod = podClient.Create(ctx, pod)
|
||||
|
||||
ginkgo.By("Watching for error events or started pod")
|
||||
ev, err := podClient.WaitForErrorEventOrSuccess(ctx, pod)
|
||||
framework.ExpectNoError(err)
|
||||
gomega.Expect(ev).To(gomega.BeNil())
|
||||
|
||||
ginkgo.By("Waiting for pod completion")
|
||||
err = e2epod.WaitForPodNoLongerRunningInNamespace(ctx, f.ClientSet, pod.Name, f.Namespace.Name)
|
||||
framework.ExpectNoError(err)
|
||||
pod, err = podClient.Get(ctx, pod.Name, metav1.GetOptions{})
|
||||
framework.ExpectNoError(err)
|
||||
|
||||
ginkgo.By("Checking that the pod succeeded")
|
||||
gomega.Expect(pod.Status.Phase).To(gomega.Equal(v1.PodSucceeded))
|
||||
}
|
||||
|
||||
func testNvidiaCLIPod() *v1.Pod {
|
||||
podName := "gpu-cli-" + string(uuid.NewUUID())
|
||||
pod := v1.Pod{
|
||||
ObjectMeta: metav1.ObjectMeta{
|
||||
Name: podName,
|
||||
Annotations: map[string]string{},
|
||||
},
|
||||
Spec: v1.PodSpec{
|
||||
Containers: []v1.Container{
|
||||
{
|
||||
Name: "nvidia-smi",
|
||||
Image: "nvidia/cuda:12.3.2-runtime-ubuntu22.04",
|
||||
Resources: v1.ResourceRequirements{
|
||||
Limits: v1.ResourceList{
|
||||
"nvidia.com/gpu": resource.MustParse("1"),
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
RestartPolicy: v1.RestartPolicyNever,
|
||||
},
|
||||
}
|
||||
return &pod
|
||||
}
|
||||
|
||||
func testMatrixMultiplicationPod() *v1.Pod {
|
||||
podName := "gpu-matmul-" + string(uuid.NewUUID())
|
||||
pod := v1.Pod{
|
||||
ObjectMeta: metav1.ObjectMeta{
|
||||
Name: podName,
|
||||
Annotations: map[string]string{},
|
||||
},
|
||||
Spec: v1.PodSpec{
|
||||
Containers: []v1.Container{
|
||||
{
|
||||
Name: "gpu-matmul",
|
||||
Image: "tensorflow/tensorflow:latest-gpu",
|
||||
Command: []string{
|
||||
"python",
|
||||
"-c",
|
||||
`
|
||||
import tensorflow as tf
|
||||
import time
|
||||
|
||||
print("TensorFlow version:", tf.__version__)
|
||||
print("Num GPUs Available: ", len(tf.config.experimental.list_physical_devices('GPU')))
|
||||
|
||||
# Simple matrix multiplication test
|
||||
with tf.device('/GPU:0'):
|
||||
a = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
|
||||
b = tf.constant([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])
|
||||
c = tf.matmul(a, b)
|
||||
|
||||
print("Matrix multiplication result:", c.numpy())
|
||||
|
||||
# Performance test
|
||||
n = 5000
|
||||
start_time = time.time()
|
||||
with tf.device('/GPU:0'):
|
||||
matrix1 = tf.random.normal((n, n))
|
||||
matrix2 = tf.random.normal((n, n))
|
||||
result = tf.matmul(matrix1, matrix2)
|
||||
end_time = time.time()
|
||||
|
||||
print(f"Time taken for {n}x{n} matrix multiplication: {end_time - start_time:.2f} seconds")
|
||||
`,
|
||||
},
|
||||
Resources: v1.ResourceRequirements{
|
||||
Limits: v1.ResourceList{
|
||||
"nvidia.com/gpu": resource.MustParse("1"),
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
RestartPolicy: v1.RestartPolicyNever,
|
||||
},
|
||||
}
|
||||
return &pod
|
||||
}
|
||||
|
||||
func SetupEnvironmentAndSkipIfNeeded(ctx context.Context, f *framework.Framework, clientSet clientset.Interface) {
|
||||
if framework.ProviderIs("gce") {
|
||||
rsgather := SetupNVIDIAGPUNode(ctx, f)
|
||||
defer func() {
|
||||
framework.Logf("Stopping ResourceUsageGather")
|
||||
constraints := make(map[string]e2edebug.ResourceConstraint)
|
||||
// For now, just gets summary. Can pass valid constraints in the future.
|
||||
summary, err := rsgather.StopAndSummarize([]int{50, 90, 100}, constraints)
|
||||
f.TestSummaries = append(f.TestSummaries, summary)
|
||||
framework.ExpectNoError(err, "getting resource usage summary")
|
||||
}()
|
||||
}
|
||||
nodes, err := e2enode.GetReadySchedulableNodes(ctx, clientSet)
|
||||
framework.ExpectNoError(err)
|
||||
capacity := 0
|
||||
allocatable := 0
|
||||
for _, node := range nodes.Items {
|
||||
val, ok := node.Status.Capacity[e2egpu.NVIDIAGPUResourceName]
|
||||
if !ok {
|
||||
continue
|
||||
}
|
||||
capacity += int(val.Value())
|
||||
val, ok = node.Status.Allocatable[e2egpu.NVIDIAGPUResourceName]
|
||||
if !ok {
|
||||
continue
|
||||
}
|
||||
allocatable += int(val.Value())
|
||||
}
|
||||
if capacity == 0 {
|
||||
e2eskipper.Skipf("%d ready nodes do not have any Nvidia GPU(s). Skipping...", len(nodes.Items))
|
||||
}
|
||||
if allocatable == 0 {
|
||||
e2eskipper.Skipf("%d ready nodes do not have any allocatable Nvidia GPU(s). Skipping...", len(nodes.Items))
|
||||
}
|
||||
}
|
||||
|
||||
func areGPUsAvailableOnAllSchedulableNodes(ctx context.Context, clientSet clientset.Interface) bool {
|
||||
framework.Logf("Getting list of Nodes from API server")
|
||||
nodeList, err := clientSet.CoreV1().Nodes().List(ctx, metav1.ListOptions{})
|
||||
framework.ExpectNoError(err, "getting node list")
|
||||
for _, node := range nodeList.Items {
|
||||
if node.Spec.Unschedulable {
|
||||
continue
|
||||
}
|
||||
framework.Logf("gpuResourceName %s", e2egpu.NVIDIAGPUResourceName)
|
||||
if val, ok := node.Status.Capacity[e2egpu.NVIDIAGPUResourceName]; !ok || val.Value() == 0 {
|
||||
framework.Logf("Nvidia GPUs not available on Node: %q", node.Name)
|
||||
return false
|
||||
}
|
||||
}
|
||||
framework.Logf("Nvidia GPUs exist on all schedulable nodes")
|
||||
return true
|
||||
}
|
||||
|
||||
func logOSImages(ctx context.Context, f *framework.Framework) {
|
||||
nodeList, err := f.ClientSet.CoreV1().Nodes().List(ctx, metav1.ListOptions{})
|
||||
framework.ExpectNoError(err, "getting node list")
|
||||
for _, node := range nodeList.Items {
|
||||
framework.Logf("Nodename: %v, OS Image: %v", node.Name, node.Status.NodeInfo.OSImage)
|
||||
}
|
||||
}
|
||||
|
||||
const (
|
||||
// Nvidia driver installation can take upwards of 5 minutes.
|
||||
driverInstallTimeout = 10 * time.Minute
|
||||
)
|
||||
|
||||
// SetupNVIDIAGPUNode install Nvidia Drivers and wait for Nvidia GPUs to be available on nodes
|
||||
func SetupNVIDIAGPUNode(ctx context.Context, f *framework.Framework) *e2edebug.ContainerResourceGatherer {
|
||||
logOSImages(ctx, f)
|
||||
|
||||
var err error
|
||||
var ds *appsv1.DaemonSet
|
||||
dsYamlURLFromEnv := os.Getenv("NVIDIA_DRIVER_INSTALLER_DAEMONSET")
|
||||
if dsYamlURLFromEnv != "" {
|
||||
// Using DaemonSet from remote URL
|
||||
framework.Logf("Using remote nvidia-driver-installer daemonset manifest from %v", dsYamlURLFromEnv)
|
||||
ds, err = e2emanifest.DaemonSetFromURL(ctx, dsYamlURLFromEnv)
|
||||
framework.ExpectNoError(err, "failed get remote")
|
||||
} else {
|
||||
// Using default local DaemonSet
|
||||
framework.Logf("Using default local nvidia-driver-installer daemonset manifest.")
|
||||
data, err := e2etestfiles.Read("test/e2e/testing-manifests/scheduling/nvidia-driver-installer.yaml")
|
||||
framework.ExpectNoError(err, "failed to read local manifest for nvidia-driver-installer daemonset")
|
||||
ds, err = e2emanifest.DaemonSetFromData(data)
|
||||
framework.ExpectNoError(err, "failed to parse local manifest for nvidia-driver-installer daemonset")
|
||||
}
|
||||
ds.Namespace = f.Namespace.Name
|
||||
_, err = f.ClientSet.AppsV1().DaemonSets(f.Namespace.Name).Create(ctx, ds, metav1.CreateOptions{})
|
||||
framework.ExpectNoError(err, "failed to create nvidia-driver-installer daemonset")
|
||||
framework.Logf("Successfully created daemonset to install Nvidia drivers.")
|
||||
|
||||
pods, err := e2eresource.WaitForControlledPods(ctx, f.ClientSet, ds.Namespace, ds.Name, extensionsinternal.Kind("DaemonSet"))
|
||||
framework.ExpectNoError(err, "failed to get pods controlled by the nvidia-driver-installer daemonset")
|
||||
|
||||
devicepluginPods, err := e2eresource.WaitForControlledPods(ctx, f.ClientSet, "kube-system", "nvidia-gpu-device-plugin", extensionsinternal.Kind("DaemonSet"))
|
||||
if err == nil {
|
||||
framework.Logf("Adding deviceplugin addon pod.")
|
||||
pods.Items = append(pods.Items, devicepluginPods.Items...)
|
||||
}
|
||||
|
||||
framework.Logf("Starting ResourceUsageGather for the created DaemonSet pods.")
|
||||
rsgather, err := e2edebug.NewResourceUsageGatherer(ctx, f.ClientSet,
|
||||
e2edebug.ResourceGathererOptions{InKubemark: false, Nodes: e2edebug.AllNodes, ResourceDataGatheringPeriod: 2 * time.Second, ProbeDuration: 2 * time.Second, PrintVerboseLogs: true}, pods)
|
||||
framework.ExpectNoError(err, "creating ResourceUsageGather for the daemonset pods")
|
||||
go rsgather.StartGatheringData(ctx)
|
||||
|
||||
// Wait for Nvidia GPUs to be available on nodes
|
||||
framework.Logf("Waiting for drivers to be installed and GPUs to be available in Node Capacity...")
|
||||
gomega.Eventually(ctx, func(ctx context.Context) bool {
|
||||
return areGPUsAvailableOnAllSchedulableNodes(ctx, f.ClientSet)
|
||||
}, driverInstallTimeout, time.Second).Should(gomega.BeTrueBecause("expected GPU resources to be available within the timout"))
|
||||
|
||||
return rsgather
|
||||
}
|
Loading…
Reference in New Issue
Block a user