eliminate possibility of double-calling

This commit is contained in:
Daniel Smith 2015-01-13 16:53:50 -08:00
parent f589ee98e0
commit 30be0eeac7
2 changed files with 78 additions and 4 deletions

View File

@ -80,19 +80,25 @@ func (c *timeCache) Get(key string) T {
}
// returns the item and true if it is found and not expired, otherwise nil and false.
// If this returns false, it has locked c.inFlightLock and it is caller's responsibility
// to unlock that.
func (c *timeCache) get(key string) (T, bool) {
c.lock.RLock()
defer c.lock.RUnlock()
data, ok := c.cache[key]
now := c.clock.Now()
if !ok || now.Sub(data.lastUpdate) > c.ttl {
// We must lock this while we hold c.lock-- otherwise, a writer could
// write to c.cache and remove the channel from c.inFlight before we
// manage to read c.inFlight.
c.inFlightLock.Lock()
return nil, false
}
return data.item, true
}
// c.inFlightLock MUST be locked before calling this. fillOrWait will unlock it.
func (c *timeCache) fillOrWait(key string) chan T {
c.inFlightLock.Lock()
defer c.inFlightLock.Unlock()
// Already a call in progress?
@ -104,7 +110,9 @@ func (c *timeCache) fillOrWait(key string) chan T {
result := make(chan T, 1) // non-blocking
c.inFlight[key] = result
go func() {
// Make potentially slow call
// Make potentially slow call.
// While this call is in flight, fillOrWait will
// presumably exit.
data := timeCacheEntry{
item: c.fillFunc(key),
lastUpdate: c.clock.Now(),
@ -113,13 +121,13 @@ func (c *timeCache) fillOrWait(key string) chan T {
// Store in cache
c.lock.Lock()
defer c.lock.Unlock()
c.cache[key] = data
c.lock.Unlock()
// Remove in flight entry
c.inFlightLock.Lock()
defer c.inFlightLock.Unlock()
delete(c.inFlight, key)
c.inFlightLock.Unlock()
}()
return result
}

View File

@ -17,6 +17,8 @@ limitations under the License.
package util
import (
"math/rand"
"runtime"
"sync"
"testing"
"time"
@ -115,3 +117,67 @@ func TestCacheParallelOneCall(t *testing.T) {
t.Errorf("Expected %v, got %v", e, a)
}
}
func TestCacheParallelNoDeadlocksNoDoubleCalls(t *testing.T) {
// Make 50 random keys
keys := []string{}
fuzz.New().NilChance(0).NumElements(50, 50).Fuzz(&keys)
// Data structure for tracking when each key is accessed.
type callTrack struct {
sync.Mutex
accessTimes []time.Time
}
calls := map[string]*callTrack{}
for _, k := range keys {
calls[k] = &callTrack{}
}
// This is called to fill the cache in the case of a cache miss
// or cache entry expiration. We record the time.
ff := func(key string) T {
ct := calls[key]
ct.Lock()
ct.accessTimes = append(ct.accessTimes, time.Now())
ct.Unlock()
// make sure that there is time for multiple requests to come in
// for the same key before this returns.
time.Sleep(time.Millisecond)
return key
}
cacheDur := 10 * time.Millisecond
c := NewTimeCache(RealClock{}, cacheDur, ff)
// Spawn a bunch of goroutines, each of which sequentially requests
// 500 random keys from the cache.
runtime.GOMAXPROCS(16)
var wg sync.WaitGroup
for i := 0; i < 500; i++ {
wg.Add(1)
go func(seed int64) {
r := rand.New(rand.NewSource(seed))
for i := 0; i < 500; i++ {
c.Get(keys[r.Intn(len(keys))])
}
wg.Done()
}(rand.Int63())
}
wg.Wait()
// Since the cache should hold things for 10ms, no calls for a given key
// should be more closely spaced than that.
for k, ct := range calls {
if len(ct.accessTimes) < 2 {
continue
}
cur := ct.accessTimes[0]
for i := 1; i < len(ct.accessTimes); i++ {
next := ct.accessTimes[i]
if next.Sub(cur) < cacheDur {
t.Errorf("%v was called at %v and %v", k, cur, next)
}
cur = next
}
}
}