Port BoundedFrequencyRunner from flowcontrol.RateLimiter to clock.Clock

Co-authored-by: Dan Winship <danwinship@redhat.com>
This commit is contained in:
Antonio Ojea
2025-05-01 23:28:37 +00:00
committed by Dan Winship
parent eae17c21b0
commit 459188ce25
2 changed files with 365 additions and 419 deletions

View File

@@ -18,12 +18,11 @@ package runner
import (
"fmt"
"sync"
"time"
"k8s.io/client-go/util/flowcontrol"
utilruntime "k8s.io/apimachinery/pkg/util/runtime"
"k8s.io/klog/v2"
"k8s.io/utils/clock"
)
// BoundedFrequencyRunner manages runs of a user-provided work function.
@@ -36,96 +35,14 @@ type BoundedFrequencyRunner struct {
run chan struct{} // try an async run
mu sync.Mutex // guards runs of fn and all mutations
fn func() error // the work function
lastRun time.Time // time of last run
timer timer // timer for deferred runs
limiter rateLimiter // rate limiter for on-demand runs
fn func() error // the work function
minIntervalTimer clock.Timer
nextRunTimer clock.Timer // Combined timer for maxInterval and retryInterval logic
clock clock.Clock
}
// designed so that flowcontrol.RateLimiter satisfies
type rateLimiter interface {
TryAccept() bool
Stop()
}
type nullLimiter struct{}
func (nullLimiter) TryAccept() bool {
return true
}
func (nullLimiter) Stop() {}
var _ rateLimiter = nullLimiter{}
// for testing
type timer interface {
// C returns the timer's selectable channel.
C() <-chan time.Time
// See time.Timer.Reset.
Reset(d time.Duration) bool
// See time.Timer.Stop.
Stop() bool
// See time.Now.
Now() time.Time
// Remaining returns the time until the timer will go off (if it is running).
Remaining() time.Duration
// See time.Since.
Since(t time.Time) time.Duration
// See time.Sleep.
Sleep(d time.Duration)
}
// implement our timer in terms of std time.Timer.
type realTimer struct {
timer *time.Timer
next time.Time
}
func (rt *realTimer) C() <-chan time.Time {
return rt.timer.C
}
func (rt *realTimer) Reset(d time.Duration) bool {
rt.next = time.Now().Add(d)
return rt.timer.Reset(d)
}
func (rt *realTimer) Stop() bool {
return rt.timer.Stop()
}
func (rt *realTimer) Now() time.Time {
return time.Now()
}
func (rt *realTimer) Remaining() time.Duration {
return rt.next.Sub(time.Now())
}
func (rt *realTimer) Since(t time.Time) time.Duration {
return time.Since(t)
}
func (rt *realTimer) Sleep(d time.Duration) {
time.Sleep(d)
}
var _ timer = &realTimer{}
// NewBoundedFrequencyRunner creates and returns a new BoundedFrequencyRunner.
// This runner manages the execution frequency of the provided work function `fn`.
//
// All runs will be async to the caller of BoundedFrequencyRunner.Run, but
// multiple runs are serialized. If the function needs to hold locks, it must
// take them internally.
// This runner manages the execution frequency of the provided function `fn`.
//
// The runner guarantees two properties:
// 1. Minimum Interval (`minInterval`): At least `minInterval` must pass between
@@ -143,13 +60,11 @@ var _ timer = &realTimer{}
// (unless another trigger, like `Run()` or `maxInterval`, causes it to run sooner). Any
// successful run will abort the retry attempt.
func NewBoundedFrequencyRunner(name string, fn func() error, minInterval, retryInterval, maxInterval time.Duration) *BoundedFrequencyRunner {
timer := &realTimer{timer: time.NewTimer(0)} // will tick immediately
<-timer.C() // consume the first tick
return construct(name, fn, minInterval, retryInterval, maxInterval, timer)
return construct(name, fn, minInterval, retryInterval, maxInterval, clock.RealClock{})
}
// Make an instance with dependencies injected.
func construct(name string, fn func() error, minInterval, retryInterval, maxInterval time.Duration, timer timer) *BoundedFrequencyRunner {
func construct(name string, fn func() error, minInterval, retryInterval, maxInterval time.Duration, clock clock.Clock) *BoundedFrequencyRunner {
if maxInterval < minInterval {
panic(fmt.Sprintf("%s: maxInterval (%v) must be >= minInterval (%v)", name, maxInterval, minInterval))
}
@@ -163,14 +78,9 @@ func construct(name string, fn func() error, minInterval, retryInterval, maxInte
maxInterval: maxInterval,
run: make(chan struct{}, 1),
timer: timer,
}
if minInterval == 0 {
bfr.limiter = nullLimiter{}
} else {
qps := float32(time.Second) / float32(minInterval)
bfr.limiter = flowcontrol.NewTokenBucketRateLimiterWithClock(qps, 1, timer)
clock: clock,
}
return bfr
}
@@ -178,17 +88,56 @@ func construct(name string, fn func() error, minInterval, retryInterval, maxInte
// called as a goroutine.
func (bfr *BoundedFrequencyRunner) Loop(stop <-chan struct{}) {
klog.V(3).InfoS("Loop running", "runner", bfr.name)
bfr.timer.Reset(bfr.maxInterval)
defer close(bfr.run)
bfr.minIntervalTimer = bfr.clock.NewTimer(bfr.minInterval)
defer bfr.minIntervalTimer.Stop()
// Initialize nextRunTimer with maxInterval
bfr.nextRunTimer = bfr.clock.NewTimer(bfr.maxInterval)
defer bfr.nextRunTimer.Stop()
for {
select {
case <-stop:
bfr.stop()
klog.V(3).InfoS("Loop stopping", "runner", bfr.name)
return
case <-bfr.timer.C():
bfr.tryRun()
case <-bfr.nextRunTimer.C(): // Wait on the single timer
case <-bfr.run:
bfr.tryRun()
}
// stop the timers here to allow the tests using the fake clock to synchronize
// with the fakeClock.HasWaiters() method. The timers are reset after the function
// is executed.
bfr.minIntervalTimer.Stop()
bfr.nextRunTimer.Stop()
var err error
// avoid crashing if the function executed crashes
func() {
defer utilruntime.HandleCrash()
err = bfr.fn()
}()
// Determine the next interval based on the result
nextInterval := bfr.maxInterval
if err != nil {
// If error, ensure next run is within retryInterval and maxInterval
if bfr.retryInterval < nextInterval {
nextInterval = bfr.retryInterval
}
klog.V(3).InfoS("scheduling retry", "runner", bfr.name, "interval", nextInterval, "error", err)
}
// Reset the timers
bfr.minIntervalTimer.Reset(bfr.minInterval)
bfr.nextRunTimer.Reset(nextInterval)
// Wait for minInterval before looping
select {
case <-stop:
klog.V(3).InfoS("Loop stopping", "runner", bfr.name)
return
case <-bfr.minIntervalTimer.C():
}
}
}
@@ -204,49 +153,3 @@ func (bfr *BoundedFrequencyRunner) Run() {
default:
}
}
// assumes the lock is not held
func (bfr *BoundedFrequencyRunner) stop() {
bfr.mu.Lock()
defer bfr.mu.Unlock()
bfr.limiter.Stop()
bfr.timer.Stop()
}
// assumes the lock is not held
func (bfr *BoundedFrequencyRunner) tryRun() {
bfr.mu.Lock()
defer bfr.mu.Unlock()
if bfr.limiter.TryAccept() {
// We're allowed to run the function right now.
err := bfr.fn()
bfr.lastRun = bfr.timer.Now()
bfr.timer.Stop()
nextInterval := bfr.maxInterval
if err != nil {
// an error will schedule a retry after the retryInterval,
// any successful run before that will stop the retry attempt.
nextInterval = bfr.retryInterval
klog.V(3).InfoS("scheduling retry", "runner", bfr.name, "interval", nextInterval, "error", err)
}
bfr.timer.Reset(nextInterval)
return
}
// It can't run right now, figure out when it can run next.
elapsed := bfr.timer.Since(bfr.lastRun) // how long since last run
nextPossible := bfr.minInterval - elapsed // time to next possible run
nextScheduled := bfr.timer.Remaining() // time to next scheduled run
klog.V(4).InfoS("can't run", "runner", bfr.name, "elapsed", elapsed, "nextPossible", nextPossible, "nextScheduled", nextScheduled)
// It's hard to avoid race conditions in the unit tests unless we always reset
// the timer here, even when it's unchanged
if nextPossible < nextScheduled {
nextScheduled = nextPossible
}
bfr.timer.Stop()
bfr.timer.Reset(nextScheduled)
}

View File

@@ -19,354 +19,397 @@ package runner
import (
"fmt"
"sync"
"sync/atomic"
"testing"
"time"
clock "k8s.io/utils/clock/testing"
)
// Track calls to the managed function.
type receiver struct {
lock sync.Mutex
run bool
retry bool
counter atomic.Int32
// counterCh signals completion of F() and sends the new count.
// It's unbuffered to make the send in F() blocking.
counterCh chan int
resultMu sync.RWMutex
result error
}
func (r *receiver) F() error {
r.lock.Lock()
defer r.lock.Unlock()
r.run = true
if r.retry {
r.retry = false
return fmt.Errorf("retry")
}
return nil
newCount := r.counter.Add(1)
// Blocking send: F() will wait here until the test reads from counterCh.
r.counterCh <- int(newCount)
r.resultMu.RLock()
defer r.resultMu.RUnlock()
return r.result
}
func (r *receiver) reset() bool {
r.lock.Lock()
defer r.lock.Unlock()
was := r.run
r.run = false
return was
}
func (r *receiver) setRetry(retry bool) {
r.lock.Lock()
defer r.lock.Unlock()
r.retry = retry
}
// A single change event in the fake timer.
type timerUpdate struct {
active bool
next time.Duration // iff active == true
}
// Fake time.
type fakeTimer struct {
c chan time.Time
lock sync.Mutex
now time.Time
timeout time.Time
active bool
updated chan timerUpdate
}
func newFakeTimer() *fakeTimer {
ft := &fakeTimer{
now: time.Date(2000, 1, 1, 0, 0, 0, 0, time.UTC),
c: make(chan time.Time),
updated: make(chan timerUpdate),
}
return ft
}
func (ft *fakeTimer) C() <-chan time.Time {
return ft.c
}
func (ft *fakeTimer) Reset(in time.Duration) bool {
ft.lock.Lock()
defer ft.lock.Unlock()
was := ft.active
ft.active = true
ft.timeout = ft.now.Add(in)
ft.updated <- timerUpdate{
active: true,
next: in,
}
return was
}
func (ft *fakeTimer) Stop() bool {
ft.lock.Lock()
defer ft.lock.Unlock()
was := ft.active
ft.active = false
ft.updated <- timerUpdate{
active: false,
}
return was
}
func (ft *fakeTimer) Now() time.Time {
ft.lock.Lock()
defer ft.lock.Unlock()
return ft.now
}
func (ft *fakeTimer) Remaining() time.Duration {
ft.lock.Lock()
defer ft.lock.Unlock()
return ft.timeout.Sub(ft.now)
}
func (ft *fakeTimer) Since(t time.Time) time.Duration {
ft.lock.Lock()
defer ft.lock.Unlock()
return ft.now.Sub(t)
}
func (ft *fakeTimer) Sleep(d time.Duration) {
// ft.advance grabs ft.lock
ft.advance(d)
}
// advance the current time.
func (ft *fakeTimer) advance(d time.Duration) {
ft.lock.Lock()
defer ft.lock.Unlock()
ft.now = ft.now.Add(d)
if ft.active && !ft.now.Before(ft.timeout) {
ft.active = false
ft.c <- ft.timeout
func newReceiver() *receiver {
return &receiver{
counterCh: make(chan int),
}
}
// return the calling line number (for printing)
// test the timer's state
func checkTimer(name string, t *testing.T, upd timerUpdate, active bool, next time.Duration) {
t.Helper()
if upd.active != active {
t.Fatalf("%s: expected timer active=%v", name, active)
}
if active && upd.next != next {
t.Fatalf("%s: expected timer to be %v, got %v", name, next, upd.next)
}
func (r *receiver) calls() <-chan int {
return r.counterCh
}
// test and reset the receiver's state
func checkReceiver(name string, t *testing.T, receiver *receiver, expected bool) {
t.Helper()
triggered := receiver.reset()
if expected && !triggered {
t.Fatalf("%s: function should have been called", name)
} else if !expected && triggered {
t.Fatalf("%s: function should not have been called", name)
}
func (r *receiver) setReturnValue(err error) {
r.resultMu.Lock()
defer r.resultMu.Unlock()
r.result = err
}
// Durations embedded in test cases depend on these.
var minInterval = 1 * time.Second
var retryInterval = 5 * time.Second
var maxInterval = 10 * time.Second
func waitForReset(name string, t *testing.T, timer *fakeTimer, obj *receiver, expectCall bool, expectNext time.Duration) {
t.Helper()
upd := <-timer.updated // wait for stop
checkReceiver(name, t, obj, expectCall)
checkReceiver(name, t, obj, false) // prove post-condition
checkTimer(name, t, upd, false, 0)
upd = <-timer.updated // wait for reset
checkTimer(name, t, upd, true, expectNext)
}
func waitForRun(name string, t *testing.T, timer *fakeTimer, obj *receiver) {
t.Helper()
waitForReset(name, t, timer, obj, true, maxInterval)
}
func waitForRunWithRetry(name string, t *testing.T, timer *fakeTimer, obj *receiver, expectNext time.Duration) {
t.Helper()
waitForReset(name, t, timer, obj, true, expectNext)
}
func waitForDefer(name string, t *testing.T, timer *fakeTimer, obj *receiver, expectNext time.Duration) {
t.Helper()
waitForReset(name, t, timer, obj, false, expectNext)
}
func waitForNothing(name string, t *testing.T, timer *fakeTimer, obj *receiver) {
// assertCalls waits for the receiver's function to be called and asserts that
// the total call count matches expectedCalls. It fails the test if the timeout is reached
// or if the call count doesn't match.
func assertCalls(t *testing.T, r *receiver, expectedCalls int) {
t.Helper()
select {
case <-timer.c:
t.Fatalf("%s: unexpected timer tick", name)
case upd := <-timer.updated:
t.Fatalf("%s: unexpected timer update %v", name, upd)
default:
case calls := <-r.calls():
if calls != expectedCalls {
t.Fatalf("expected %d calls, but got %d", expectedCalls, calls)
}
case <-time.After(1 * time.Second):
t.Fatalf("timed out waiting for function execution (expected %d calls, got %d)", expectedCalls, r.counter.Load())
}
}
// assertNoCalls waits for 100 millisecond and asserts that the receiver's
// function was *not* called during that time. It fails the test if a call is detected.
func assertNoCalls(t *testing.T, r *receiver) {
t.Helper()
select {
case calls := <-r.calls():
t.Fatalf("unexpected function execution detected (call count: %d)", calls)
case <-time.After(100 * time.Millisecond):
}
checkReceiver(name, t, obj, false)
}
func Test_BoundedFrequencyRunner(t *testing.T) {
obj := &receiver{}
timer := newFakeTimer()
runner := construct("test-runner", obj.F, minInterval, retryInterval, maxInterval, timer)
var minInterval = 1 * time.Second
var retryInterval = 5 * time.Second
var maxInterval = 10 * time.Second
obj := newReceiver()
fakeClock := clock.NewFakeClock(time.Now())
runner := construct("test-runner", obj.F, minInterval, retryInterval, maxInterval, fakeClock)
stop := make(chan struct{})
defer close(stop)
var upd timerUpdate
// Start.
go runner.Loop(stop)
upd = <-timer.updated // wait for initial time to be set to max
checkTimer("init", t, upd, true, maxInterval)
checkReceiver("init", t, obj, false)
// Run once, immediately.
// rel=0ms
runner.Run()
waitForRun("first run", t, timer, obj)
// Run again, before minInterval expires.
timer.advance(500 * time.Millisecond) // rel=500ms
assertCalls(t, obj, 1)
// wait for the timers to be reset
for fakeClock.Waiters() != 2 {
time.Sleep(1 * time.Millisecond)
}
// Run again, before minInterval expires. No execution expected.
fakeClock.Step(500 * time.Millisecond) // rel=500ms
runner.Run()
waitForDefer("too soon after first", t, timer, obj, 500*time.Millisecond)
assertNoCalls(t, obj)
// Run again, before minInterval expires.
timer.advance(499 * time.Millisecond) // rel=999ms
// Run again, before minInterval expires. No execution expected.
fakeClock.Step(499 * time.Millisecond) // rel=999ms
runner.Run()
waitForDefer("still too soon after first", t, timer, obj, 1*time.Millisecond)
assertNoCalls(t, obj)
// Do the deferred run
timer.advance(1 * time.Millisecond) // rel=1000ms
waitForRun("second run", t, timer, obj)
fakeClock.Step(1 * time.Millisecond) // rel=1000ms
assertCalls(t, obj, 2)
// Try again immediately
runner.Run()
waitForDefer("too soon after second", t, timer, obj, 1*time.Second)
assertNoCalls(t, obj)
// Run again, before minInterval expires.
timer.advance(1 * time.Millisecond) // rel=1ms
// Run again, before minInterval expires. No execution expected.
fakeClock.Step(1 * time.Millisecond) // rel=1ms
runner.Run()
waitForDefer("still too soon after second", t, timer, obj, 999*time.Millisecond)
assertNoCalls(t, obj)
// Ensure that we don't run again early
timer.advance(998 * time.Millisecond) // rel=999ms
waitForNothing("premature", t, timer, obj)
// Ensure that we don't run again early. No execution expected.
fakeClock.Step(998 * time.Millisecond) // rel=999ms
assertNoCalls(t, obj)
// Do the deferred run
timer.advance(1 * time.Millisecond) // rel=1000ms
waitForRun("third run", t, timer, obj)
// Let minInterval pass, but there are no runs queued
timer.advance(1 * time.Second) // rel=1000ms
waitForNothing("minInterval", t, timer, obj)
fakeClock.Step(1 * time.Millisecond) // rel=1000ms
assertCalls(t, obj, 3)
// wait for the timers to be reset
for fakeClock.Waiters() != 2 {
time.Sleep(1 * time.Millisecond)
}
// Let minInterval pass, but there are no runs queued. No execution expected.
fakeClock.Step(1 * time.Second) // rel=1000ms
assertNoCalls(t, obj)
// Let maxInterval pass
timer.advance(9 * time.Second) // rel=10000ms
waitForRun("maxInterval", t, timer, obj)
// Run again, before minInterval expires.
timer.advance(1 * time.Millisecond) // rel=1ms
fakeClock.Step(maxInterval) // rel=10000ms
assertCalls(t, obj, 4)
// wait for the timers to be reset
for fakeClock.Waiters() != 2 {
time.Sleep(1 * time.Millisecond)
}
// Run again, before minInterval expires. No execution expected.
fakeClock.Step(1 * time.Millisecond) // rel=1ms
runner.Run()
waitForDefer("too soon after maxInterval run", t, timer, obj, 999*time.Millisecond)
assertNoCalls(t, obj)
// Let minInterval pass
timer.advance(999 * time.Millisecond) // rel=1000ms
waitForRun("fifth run", t, timer, obj)
// Clean up.
stop <- struct{}{}
// a message is sent to time.updated in func Stop() at the end of the child goroutine
// to terminate the child, a receive on time.updated is needed here
<-timer.updated
fakeClock.Step(999 * time.Millisecond) // rel=1000ms
assertCalls(t, obj, 5)
}
func Test_BoundedFrequencyRunnerRetry(t *testing.T) {
obj := &receiver{}
timer := newFakeTimer()
runner := construct("test-runner", obj.F, minInterval, retryInterval, maxInterval, timer)
var minInterval = 1 * time.Second
var retryInterval = 5 * time.Second
var maxInterval = 10 * time.Second
obj := newReceiver()
fakeClock := clock.NewFakeClock(time.Now())
runner := construct("test-runner", obj.F, minInterval, retryInterval, maxInterval, fakeClock)
stop := make(chan struct{})
defer close(stop)
var upd timerUpdate
// Start.
go runner.Loop(stop)
upd = <-timer.updated // wait for initial time to be set to max
checkTimer("init", t, upd, true, maxInterval)
checkReceiver("init", t, obj, false)
// Run once, immediately, and queue a retry
// rel=0ms
obj.setRetry(true)
obj.setReturnValue(fmt.Errorf("sync error"))
runner.Run()
waitForRunWithRetry("first run", t, timer, obj, 5*time.Second)
assertCalls(t, obj, 1)
// wait for the timers to be reset
for fakeClock.Waiters() != 2 {
time.Sleep(1 * time.Millisecond)
}
// next run will succeed
obj.setReturnValue(nil)
assertNoCalls(t, obj)
// Nothing happens...
timer.advance(time.Second) // rel=1000ms
waitForNothing("minInterval, nothing queued", t, timer, obj)
fakeClock.Step(minInterval) // rel=1000ms
assertNoCalls(t, obj)
// After retryInterval, function is called
timer.advance(4 * time.Second) // rel=5000ms
waitForRun("retry", t, timer, obj)
fakeClock.Step(4 * time.Second) // rel=5000ms
assertCalls(t, obj, 2)
// wait for the timers to be reset
for fakeClock.Waiters() != 2 {
time.Sleep(1 * time.Millisecond)
}
// Run again, before minInterval expires.
timer.advance(499 * time.Millisecond) // rel=499ms
// Run again, before minInterval expires and trigger a retry
fakeClock.Step(499 * time.Millisecond) // rel=499ms
obj.setReturnValue(fmt.Errorf("sync error"))
runner.Run()
waitForDefer("too soon after retry", t, timer, obj, 501*time.Millisecond)
assertNoCalls(t, obj)
// Do the deferred run, have it queue another retry
obj.setRetry(true)
timer.advance(501 * time.Millisecond) // rel=1000ms
waitForRunWithRetry("second run", t, timer, obj, 5*time.Second)
// Do the deferred run, queue another retry after it returns
fakeClock.Step(501 * time.Millisecond) // rel=1000ms
assertCalls(t, obj, 3)
// next run will succeed
obj.setReturnValue(nil)
assertNoCalls(t, obj)
// Wait for minInterval to pass
timer.advance(time.Second) // rel=1000ms
waitForNothing("minInterval, nothing queued", t, timer, obj)
fakeClock.Step(time.Second) // rel=1000ms
assertNoCalls(t, obj)
// Now do another run
// Now do another successful that abort the retry
runner.Run()
waitForRun("third run", t, timer, obj)
assertCalls(t, obj, 4)
// wait for the timers to be reset
for fakeClock.Waiters() != 2 {
time.Sleep(1 * time.Millisecond)
}
// Retry was cancelled because we already ran
timer.advance(4 * time.Second)
waitForNothing("retry cancelled", t, timer, obj)
fakeClock.Step(4 * time.Second)
assertNoCalls(t, obj)
// Run and request a retry
obj.setRetry(true)
// New run will trigger a retry.
obj.setReturnValue(fmt.Errorf("sync error"))
runner.Run()
waitForRunWithRetry("fourth run", t, timer, obj, 5*time.Second)
assertCalls(t, obj, 5)
for fakeClock.Waiters() != 2 { // wait for retryIntervalTimer
time.Sleep(1 * time.Millisecond)
}
// next run will succeed
obj.setReturnValue(nil)
assertNoCalls(t, obj)
// Call Run again before minInterval passes
timer.advance(100 * time.Millisecond) // rel=100ms
fakeClock.Step(100 * time.Millisecond) // rel=100ms
runner.Run()
waitForDefer("too soon after fourth run", t, timer, obj, 900*time.Millisecond)
assertNoCalls(t, obj)
// Deferred run will run after minInterval passes
timer.advance(900 * time.Millisecond) // rel=1000ms
waitForRun("fifth run", t, timer, obj)
fakeClock.Step(900 * time.Millisecond) // rel=1000ms
assertCalls(t, obj, 6)
// wait for the timers to be reset
for fakeClock.Waiters() != 2 {
time.Sleep(1 * time.Millisecond)
}
// Retry was cancelled because we already ran
timer.advance(4 * time.Second) // rel=4s since run, 5s since RetryAfter
waitForNothing("retry cancelled", t, timer, obj)
fakeClock.Step(4 * time.Second) // rel=4s since run, 5s since RetryAfter
assertNoCalls(t, obj)
// Rerun happens after maxInterval
timer.advance(5 * time.Second) // rel=9s since run, 10s since RetryAfter
waitForNothing("premature", t, timer, obj)
timer.advance(time.Second) // rel=10s since run
waitForRun("maxInterval", t, timer, obj)
fakeClock.Step(5 * time.Second) // rel=9s since run, 10s since RetryAfter
assertNoCalls(t, obj)
// Clean up.
stop <- struct{}{}
// a message is sent to time.updated in func Stop() at the end of the child goroutine
// to terminate the child, a receive on time.updated is needed here
<-timer.updated
fakeClock.Step(time.Second) // rel=10s since run
assertCalls(t, obj, 7)
}
func Test_BoundedFrequencyRunnerRetryShorterThanMinInterval(t *testing.T) {
var minInterval = 5 * time.Second
var retryInterval = 1 * time.Second // Shorter than minInterval
var maxInterval = 10 * time.Second
obj := newReceiver()
fakeClock := clock.NewFakeClock(time.Now())
runner := construct("test-runner-short-retry", obj.F, minInterval, retryInterval, maxInterval, fakeClock)
stop := make(chan struct{})
defer close(stop)
go runner.Loop(stop)
// Run once immediately and trigger a retry.
// rel=0s
obj.setReturnValue(fmt.Errorf("sync error"))
runner.Run()
assertCalls(t, obj, 1)
for fakeClock.Waiters() != 2 {
time.Sleep(1 * time.Millisecond)
}
// next run will succeed
obj.setReturnValue(nil)
assertNoCalls(t, obj)
// Advance clock past retryInterval, but still within minInterval.
// rel=1s
fakeClock.Step(retryInterval)
assertNoCalls(t, obj) // Still shouldn't run because minInterval hasn't passed since run 1 finished.
// Advance clock just before minInterval expires.
// rel=4.999s
fakeClock.Step(minInterval - retryInterval - 1*time.Millisecond)
assertNoCalls(t, obj)
// Advance clock past minInterval. The retry should now trigger the run.
// rel=5s
fakeClock.Step(1 * time.Millisecond)
assertCalls(t, obj, 2) // Run happens now, triggered by the earlier retry, respecting minInterval.
// wait for the timers to be reset
for fakeClock.Waiters() != 2 {
time.Sleep(1 * time.Millisecond)
}
// Let maxInterval pass without any Run() or Retry() calls.
fakeClock.Step(maxInterval) // rel=10s since run 2
assertCalls(t, obj, 3)
}
func TestBoundedFrequencyRunner_Run_RunsAgainAfterMinInterval_RealClock(t *testing.T) {
// Use relatively short intervals for real clock testing
var minInterval = 500 * time.Millisecond
var retryInterval = 800 * time.Millisecond
var maxInterval = 1500 * time.Millisecond
obj := newReceiver()
runner := NewBoundedFrequencyRunner("test-runner", obj.F, minInterval, retryInterval, maxInterval)
stopCh := make(chan struct{})
defer close(stopCh)
go runner.Loop(stopCh)
runner.Run() // First run
assertCalls(t, obj, 1)
time.Sleep(2 * minInterval)
assertNoCalls(t, obj)
runner.Run() // Second run
assertCalls(t, obj, 2)
}
func TestBoundedFrequencyRunner_Run_DoesNotRunBeforeMinInterval_RealClock(t *testing.T) {
// Use relatively short intervals for real clock testing
var minInterval = 500 * time.Millisecond
var retryInterval = 800 * time.Millisecond
var maxInterval = 1500 * time.Millisecond
obj := newReceiver()
runner := NewBoundedFrequencyRunner("test-runner", obj.F, minInterval, retryInterval, maxInterval)
stopCh := make(chan struct{})
defer close(stopCh)
go runner.Loop(stopCh)
runner.Run() // First run
assertCalls(t, obj, 1)
time.Sleep(minInterval / 4)
runner.Run()
assertNoCalls(t, obj)
}
func TestBoundedFrequencyRunner_RunAfterMaxInterval_RealClock(t *testing.T) {
// Use relatively short intervals for real clock testing
var minInterval = 100 * time.Millisecond
var retryInterval = 200 * time.Millisecond
var maxInterval = 500 * time.Millisecond
obj := newReceiver()
runner := NewBoundedFrequencyRunner("test-runner", obj.F, minInterval, retryInterval, maxInterval)
stopCh := make(chan struct{})
defer close(stopCh)
go runner.Loop(stopCh)
assertNoCalls(t, obj)
time.Sleep(maxInterval)
assertCalls(t, obj, 1)
}
func Test_BoundedFrequencyRunnerRetry_RealClock(t *testing.T) {
// Use relatively short intervals for real clock testing
var minInterval = 100 * time.Millisecond
var retryInterval = 500 * time.Millisecond
var maxInterval = 10 * time.Second
obj := newReceiver()
// Use the real clock constructor
runner := NewBoundedFrequencyRunner("test-runner-real-clock", obj.F, minInterval, retryInterval, maxInterval)
stopCh := make(chan struct{})
defer close(stopCh)
go runner.Loop(stopCh)
t.Log("Triggering first retry")
// Run once immediately and trigger a retry.
// rel=0s
obj.setReturnValue(fmt.Errorf("sync error"))
runner.Run()
assertCalls(t, obj, 1)
// Check before retryInterval
time.Sleep(retryInterval / 4)
assertNoCalls(t, obj)
// Check after retryInterval
time.Sleep(retryInterval) // Wait past retryInterval
assertCalls(t, obj, 2)
// Check after retryInterval (relative to the *first* Retry call in this batch)
time.Sleep(retryInterval)
assertCalls(t, obj, 3)
time.Sleep(retryInterval / 8)
assertNoCalls(t, obj)
time.Sleep(retryInterval) // Wait past the new retryInterval
assertCalls(t, obj, 4)
}