Add cidrset to support multiple CIDRs

Add a new cidrset named `multicidrset` which extends the current
cidrset mechanism to track allocatable Pod and Service CIDRs.
multicidrset stores the info about allocated CIDRs in a Map as opposed
to the current cidrset implementation where it is stored in a bitmap.
This commit is contained in:
Sarvesh Rangnekar 2022-07-31 03:50:17 +00:00
parent 0ee3719d0b
commit b6392a4b07
3 changed files with 1313 additions and 0 deletions

View File

@ -0,0 +1,78 @@
/*
Copyright 2022 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package multicidrset
import (
"sync"
"k8s.io/component-base/metrics"
"k8s.io/component-base/metrics/legacyregistry"
)
const nodeIpamSubsystem = "node_ipam_controller"
var (
cidrSetAllocations = metrics.NewCounterVec(
&metrics.CounterOpts{
Subsystem: nodeIpamSubsystem,
Name: "multicidrset_cidrs_allocations_total",
Help: "Counter measuring total number of CIDR allocations.",
StabilityLevel: metrics.ALPHA,
},
[]string{"clusterCIDR"},
)
cidrSetReleases = metrics.NewCounterVec(
&metrics.CounterOpts{
Subsystem: nodeIpamSubsystem,
Name: "multicidrset_cidrs_releases_total",
Help: "Counter measuring total number of CIDR releases.",
StabilityLevel: metrics.ALPHA,
},
[]string{"clusterCIDR"},
)
cidrSetUsage = metrics.NewGaugeVec(
&metrics.GaugeOpts{
Subsystem: nodeIpamSubsystem,
Name: "multicidrset_usage_cidrs",
Help: "Gauge measuring percentage of allocated CIDRs.",
StabilityLevel: metrics.ALPHA,
},
[]string{"clusterCIDR"},
)
cidrSetAllocationTriesPerRequest = metrics.NewHistogramVec(
&metrics.HistogramOpts{
Subsystem: nodeIpamSubsystem,
Name: "multicidrset_allocation_tries_per_request",
Help: "Histogram measuring CIDR allocation tries per request.",
StabilityLevel: metrics.ALPHA,
Buckets: metrics.ExponentialBuckets(1, 5, 5),
},
[]string{"clusterCIDR"},
)
)
var registerMetrics sync.Once
// registerCidrsetMetrics the metrics that are to be monitored.
func registerCidrsetMetrics() {
registerMetrics.Do(func() {
legacyregistry.MustRegister(cidrSetAllocations)
legacyregistry.MustRegister(cidrSetReleases)
legacyregistry.MustRegister(cidrSetUsage)
legacyregistry.MustRegister(cidrSetAllocationTriesPerRequest)
})
}

View File

@ -0,0 +1,361 @@
/*
Copyright 2022 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package multicidrset
import (
"encoding/binary"
"fmt"
"math/big"
"math/bits"
"net"
"sync"
netutils "k8s.io/utils/net"
)
// MultiCIDRSet manages a set of CIDR ranges from which blocks of IPs can
// be allocated from.
type MultiCIDRSet struct {
sync.Mutex
// ClusterCIDR is the CIDR assigned to the cluster.
ClusterCIDR *net.IPNet
// NodeMaskSize is the mask size, in bits,assigned to the nodes
// caches the mask size to avoid the penalty of calling nodeMask.Size().
NodeMaskSize int
// MaxCIDRs is the maximum number of CIDRs that can be allocated.
MaxCIDRs int
// Label stores the CIDR in a string, it is used to identify the metrics such
// as Number of allocations, Total number of CIDR releases, Percentage of
// allocated CIDRs, Tries required for allocating a CIDR for a particular CIDRSet.
Label string
// AllocatedCIDRMap stores all the allocated CIDRs from the current CIDRSet.
// Stores a mapping of the next candidate CIDR for allocation to it's
// allocation status. Next candidate is used only if allocation status is false.
AllocatedCIDRMap map[string]bool
// clusterMaskSize is the mask size, in bits, assigned to the cluster.
// caches the mask size to avoid the penalty of calling clusterCIDR.Mask.Size().
clusterMaskSize int
// nodeMask is the network mask assigned to the nodes.
nodeMask net.IPMask
// allocatedCIDRs counts the number of CIDRs allocated.
allocatedCIDRs int
// nextCandidate points to the next CIDR that should be free.
nextCandidate int
}
// ClusterCIDR is an internal representation of the ClusterCIDR API object.
type ClusterCIDR struct {
// Name of the associated ClusterCIDR API object.
Name string
// IPv4CIDRSet is the MultiCIDRSet representation of ClusterCIDR.spec.ipv4
// of the associated ClusterCIDR API object.
IPv4CIDRSet *MultiCIDRSet
// IPv6CIDRSet is the MultiCIDRSet representation of ClusterCIDR.spec.ipv6
// of the associated ClusterCIDR API object.
IPv6CIDRSet *MultiCIDRSet
// AssociatedNodes is used to identify which nodes have CIDRs allocated from this ClusterCIDR.
// Stores a mapping of node name to association status.
AssociatedNodes map[string]bool
// Terminating is used to identify whether ClusterCIDR has been marked for termination.
Terminating bool
}
const (
// The subnet mask size cannot be greater than 16 more than the cluster mask size
// TODO: https://github.com/kubernetes/kubernetes/issues/44918
// clusterSubnetMaxDiff limited to 16 due to the uncompressed bitmap.
// Due to this limitation the subnet mask for IPv6 cluster cidr needs to be >= 48
// as default mask size for IPv6 is 64.
clusterSubnetMaxDiff = 16
// halfIPv6Len is the half of the IPv6 length.
halfIPv6Len = net.IPv6len / 2
)
// CIDRRangeNoCIDRsRemainingErr is an error type used to denote there is no more
// space to allocate CIDR ranges from the given CIDR.
type CIDRRangeNoCIDRsRemainingErr struct {
// CIDR represents the CIDR which is exhausted.
CIDR string
}
func (err *CIDRRangeNoCIDRsRemainingErr) Error() string {
return fmt.Sprintf("CIDR allocation failed; there are no remaining CIDRs left to allocate in the range %s", err.CIDR)
}
// CIDRSetSubNetTooBigErr is an error type to denote that subnet mask size is too
// big compared to the CIDR mask size.
type CIDRSetSubNetTooBigErr struct {
cidr string
subnetMaskSize int
clusterMaskSize int
}
func (err *CIDRSetSubNetTooBigErr) Error() string {
return fmt.Sprintf("Creation of New CIDR Set failed for %s. "+
"PerNodeMaskSize %d is too big for CIDR Mask %d, Maximum difference allowed "+
"is %d", err.cidr, err.subnetMaskSize, err.clusterMaskSize, clusterSubnetMaxDiff)
}
// NewMultiCIDRSet creates a new MultiCIDRSet.
func NewMultiCIDRSet(cidrConfig *net.IPNet, perNodeHostBits int) (*MultiCIDRSet, error) {
clusterMask := cidrConfig.Mask
clusterMaskSize, bits := clusterMask.Size()
var subNetMaskSize int
switch /*v4 or v6*/ {
case netutils.IsIPv4(cidrConfig.IP):
subNetMaskSize = 32 - perNodeHostBits
case netutils.IsIPv6(cidrConfig.IP):
subNetMaskSize = 128 - perNodeHostBits
}
if netutils.IsIPv6(cidrConfig.IP) && (subNetMaskSize-clusterMaskSize > clusterSubnetMaxDiff) {
return nil, &CIDRSetSubNetTooBigErr{
cidr: cidrConfig.String(),
subnetMaskSize: subNetMaskSize,
clusterMaskSize: clusterMaskSize,
}
}
// Register MultiCIDRSet metrics.
registerCidrsetMetrics()
return &MultiCIDRSet{
ClusterCIDR: cidrConfig,
nodeMask: net.CIDRMask(subNetMaskSize, bits),
clusterMaskSize: clusterMaskSize,
MaxCIDRs: 1 << uint32(subNetMaskSize-clusterMaskSize),
NodeMaskSize: subNetMaskSize,
Label: cidrConfig.String(),
AllocatedCIDRMap: make(map[string]bool, 0),
}, nil
}
func (s *MultiCIDRSet) indexToCIDRBlock(index int) (*net.IPNet, error) {
var ip []byte
switch /*v4 or v6*/ {
case netutils.IsIPv4(s.ClusterCIDR.IP):
j := uint32(index) << uint32(32-s.NodeMaskSize)
ipInt := (binary.BigEndian.Uint32(s.ClusterCIDR.IP)) | j
ip = make([]byte, net.IPv4len)
binary.BigEndian.PutUint32(ip, ipInt)
case netutils.IsIPv6(s.ClusterCIDR.IP):
// leftClusterIP | rightClusterIP
// 2001:0DB8:1234:0000:0000:0000:0000:0000
const v6NBits = 128
const halfV6NBits = v6NBits / 2
leftClusterIP := binary.BigEndian.Uint64(s.ClusterCIDR.IP[:halfIPv6Len])
rightClusterIP := binary.BigEndian.Uint64(s.ClusterCIDR.IP[halfIPv6Len:])
ip = make([]byte, net.IPv6len)
if s.NodeMaskSize <= halfV6NBits {
// We only care about left side IP.
leftClusterIP |= uint64(index) << uint(halfV6NBits-s.NodeMaskSize)
} else {
if s.clusterMaskSize < halfV6NBits {
// see how many bits are needed to reach the left side.
btl := uint(s.NodeMaskSize - halfV6NBits)
indexMaxBit := uint(64 - bits.LeadingZeros64(uint64(index)))
if indexMaxBit > btl {
leftClusterIP |= uint64(index) >> btl
}
}
// the right side will be calculated the same way either the
// subNetMaskSize affects both left and right sides.
rightClusterIP |= uint64(index) << uint(v6NBits-s.NodeMaskSize)
}
binary.BigEndian.PutUint64(ip[:halfIPv6Len], leftClusterIP)
binary.BigEndian.PutUint64(ip[halfIPv6Len:], rightClusterIP)
default:
return nil, fmt.Errorf("invalid IP: %s", s.ClusterCIDR.IP)
}
return &net.IPNet{
IP: ip,
Mask: s.nodeMask,
}, nil
}
// NextCandidate returns the next candidate and the last evaluated index
// for the current cidrSet. Returns nil if the candidate is already allocated.
func (s *MultiCIDRSet) NextCandidate() (*net.IPNet, int, error) {
s.Lock()
defer s.Unlock()
if s.allocatedCIDRs == s.MaxCIDRs {
return nil, 0, &CIDRRangeNoCIDRsRemainingErr{
CIDR: s.Label,
}
}
candidate := s.nextCandidate
for i := 0; i < s.MaxCIDRs; i++ {
nextCandidateCIDR, err := s.indexToCIDRBlock(candidate)
if err != nil {
return nil, i, err
}
// Check if the nextCandidate is not already allocated.
if _, ok := s.AllocatedCIDRMap[nextCandidateCIDR.String()]; !ok {
s.nextCandidate = (candidate + 1) % s.MaxCIDRs
return nextCandidateCIDR, i, nil
}
candidate = (candidate + 1) % s.MaxCIDRs
}
return nil, s.MaxCIDRs, &CIDRRangeNoCIDRsRemainingErr{
CIDR: s.Label,
}
}
// getBeginningAndEndIndices returns the indices for the given CIDR, returned
// values are inclusive indices [beginning, end].
func (s *MultiCIDRSet) getBeginningAndEndIndices(cidr *net.IPNet) (int, int, error) {
if cidr == nil {
return -1, -1, fmt.Errorf("error getting indices for cluster cidr %v, cidr is nil", s.ClusterCIDR)
}
begin, end := 0, s.MaxCIDRs-1
cidrMask := cidr.Mask
maskSize, _ := cidrMask.Size()
var ipSize int
if !s.ClusterCIDR.Contains(cidr.IP.Mask(s.ClusterCIDR.Mask)) && !cidr.Contains(s.ClusterCIDR.IP.Mask(cidr.Mask)) {
return -1, -1, fmt.Errorf("cidr %v is out the range of cluster cidr %v", cidr, s.ClusterCIDR)
}
if s.clusterMaskSize < maskSize {
var err error
ipSize = net.IPv4len
if netutils.IsIPv6(cidr.IP) {
ipSize = net.IPv6len
}
begin, err = s.getIndexForCIDR(&net.IPNet{
IP: cidr.IP.Mask(s.nodeMask),
Mask: s.nodeMask,
})
if err != nil {
return -1, -1, err
}
ip := make([]byte, ipSize)
if netutils.IsIPv4(cidr.IP) {
ipInt := binary.BigEndian.Uint32(cidr.IP) | (^binary.BigEndian.Uint32(cidr.Mask))
binary.BigEndian.PutUint32(ip, ipInt)
} else {
// ipIntLeft | ipIntRight
// 2001:0DB8:1234:0000:0000:0000:0000:0000
ipIntLeft := binary.BigEndian.Uint64(cidr.IP[:net.IPv6len/2]) | (^binary.BigEndian.Uint64(cidr.Mask[:net.IPv6len/2]))
ipIntRight := binary.BigEndian.Uint64(cidr.IP[net.IPv6len/2:]) | (^binary.BigEndian.Uint64(cidr.Mask[net.IPv6len/2:]))
binary.BigEndian.PutUint64(ip[:net.IPv6len/2], ipIntLeft)
binary.BigEndian.PutUint64(ip[net.IPv6len/2:], ipIntRight)
}
end, err = s.getIndexForCIDR(&net.IPNet{
IP: net.IP(ip).Mask(s.nodeMask),
Mask: s.nodeMask,
})
if err != nil {
return -1, -1, err
}
}
return begin, end, nil
}
// Release releases the given CIDR range.
func (s *MultiCIDRSet) Release(cidr *net.IPNet) error {
begin, end, err := s.getBeginningAndEndIndices(cidr)
if err != nil {
return err
}
s.Lock()
defer s.Unlock()
for i := begin; i <= end; i++ {
// Remove from the allocated CIDR Map and decrement the counter only if currently
// marked allocated. Avoids double counting.
currCIDR, err := s.indexToCIDRBlock(i)
if err != nil {
return err
}
if _, ok := s.AllocatedCIDRMap[currCIDR.String()]; ok {
delete(s.AllocatedCIDRMap, currCIDR.String())
s.allocatedCIDRs--
cidrSetReleases.WithLabelValues(s.Label).Inc()
}
}
cidrSetUsage.WithLabelValues(s.Label).Set(float64(s.allocatedCIDRs) / float64(s.MaxCIDRs))
return nil
}
// Occupy marks the given CIDR range as used. Occupy succeeds even if the CIDR
// range was previously used.
func (s *MultiCIDRSet) Occupy(cidr *net.IPNet) (err error) {
begin, end, err := s.getBeginningAndEndIndices(cidr)
if err != nil {
return err
}
s.Lock()
defer s.Unlock()
for i := begin; i <= end; i++ {
// Add to the allocated CIDR Map and increment the counter only if not already
// marked allocated. Prevents double counting.
currCIDR, err := s.indexToCIDRBlock(i)
if err != nil {
return err
}
if _, ok := s.AllocatedCIDRMap[currCIDR.String()]; !ok {
s.AllocatedCIDRMap[currCIDR.String()] = true
cidrSetAllocations.WithLabelValues(s.Label).Inc()
s.allocatedCIDRs++
}
}
cidrSetUsage.WithLabelValues(s.Label).Set(float64(s.allocatedCIDRs) / float64(s.MaxCIDRs))
return nil
}
func (s *MultiCIDRSet) getIndexForCIDR(cidr *net.IPNet) (int, error) {
return s.getIndexForIP(cidr.IP)
}
func (s *MultiCIDRSet) getIndexForIP(ip net.IP) (int, error) {
if ip.To4() != nil {
cidrIndex := (binary.BigEndian.Uint32(s.ClusterCIDR.IP) ^ binary.BigEndian.Uint32(ip.To4())) >> uint32(32-s.NodeMaskSize)
if cidrIndex >= uint32(s.MaxCIDRs) {
return 0, fmt.Errorf("CIDR: %v/%v is out of the range of CIDR allocator", ip, s.NodeMaskSize)
}
return int(cidrIndex), nil
}
if netutils.IsIPv6(ip) {
bigIP := big.NewInt(0).SetBytes(s.ClusterCIDR.IP)
bigIP = bigIP.Xor(bigIP, big.NewInt(0).SetBytes(ip))
cidrIndexBig := bigIP.Rsh(bigIP, uint(net.IPv6len*8-s.NodeMaskSize))
cidrIndex := cidrIndexBig.Uint64()
if cidrIndex >= uint64(s.MaxCIDRs) {
return 0, fmt.Errorf("CIDR: %v/%v is out of the range of CIDR allocator", ip, s.NodeMaskSize)
}
return int(cidrIndex), nil
}
return 0, fmt.Errorf("invalid IP: %v", ip)
}
// UpdateEvaluatedCount increments the evaluated count.
func (s *MultiCIDRSet) UpdateEvaluatedCount(evaluated int) {
cidrSetAllocationTriesPerRequest.WithLabelValues(s.Label).Observe(float64(evaluated))
}

View File

@ -0,0 +1,874 @@
/*
Copyright 2022 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package multicidrset
import (
"net"
"reflect"
"testing"
"k8s.io/component-base/metrics/testutil"
"k8s.io/klog/v2"
utilnet "k8s.io/utils/net"
)
func allocateNext(s *MultiCIDRSet) (*net.IPNet, error) {
candidate, _, err := s.NextCandidate()
if err != nil {
return nil, err
}
err = s.Occupy(candidate)
return candidate, err
}
func TestCIDRSetFullyAllocated(t *testing.T) {
cases := []struct {
clusterCIDRStr string
perNodeHostBits int
expectedCIDR string
description string
}{
{
clusterCIDRStr: "127.123.234.0/28",
perNodeHostBits: 4,
expectedCIDR: "127.123.234.0/28",
description: "Fully allocated CIDR with IPv4",
},
{
clusterCIDRStr: "beef:1234::/112",
perNodeHostBits: 16,
expectedCIDR: "beef:1234::/112",
description: "Fully allocated CIDR with IPv6",
},
}
for _, tc := range cases {
_, clusterCIDR, _ := utilnet.ParseCIDRSloppy(tc.clusterCIDRStr)
a, err := NewMultiCIDRSet(clusterCIDR, tc.perNodeHostBits)
if err != nil {
t.Fatalf("unexpected error: %v for %v", err, tc.description)
}
p, err := allocateNext(a)
if err != nil {
t.Fatalf("unexpected error: %v for %v", err, tc.description)
}
if p.String() != tc.expectedCIDR {
t.Fatalf("unexpected allocated cidr: %v, expecting %v for %v",
p.String(), tc.expectedCIDR, tc.description)
}
_, err = allocateNext(a)
if err == nil {
t.Fatalf("expected error because of fully-allocated range for %v", tc.description)
}
a.Release(p)
p, err = allocateNext(a)
if err != nil {
t.Fatalf("unexpected error: %v for %v", err, tc.description)
}
if p.String() != tc.expectedCIDR {
t.Fatalf("unexpected allocated cidr: %v, expecting %v for %v",
p.String(), tc.expectedCIDR, tc.description)
}
_, err = allocateNext(a)
if err == nil {
t.Fatalf("expected error because of fully-allocated range for %v", tc.description)
}
}
}
func TestIndexToCIDRBlock(t *testing.T) {
cases := []struct {
clusterCIDRStr string
perNodeHostBits int
index int
CIDRBlock string
description string
}{
{
clusterCIDRStr: "127.123.3.0/16",
perNodeHostBits: 8,
index: 0,
CIDRBlock: "127.123.0.0/24",
description: "1st IP address indexed with IPv4",
},
{
clusterCIDRStr: "127.123.0.0/16",
perNodeHostBits: 8,
index: 15,
CIDRBlock: "127.123.15.0/24",
description: "16th IP address indexed with IPv4",
},
{
clusterCIDRStr: "192.168.5.219/28",
perNodeHostBits: 0,
index: 5,
CIDRBlock: "192.168.5.213/32",
description: "5th IP address indexed with IPv4",
},
{
clusterCIDRStr: "2001:0db8:1234:3::/48",
perNodeHostBits: 64,
index: 0,
CIDRBlock: "2001:db8:1234::/64",
description: "1st IP address indexed with IPv6 /64",
},
{
clusterCIDRStr: "2001:0db8:1234::/48",
perNodeHostBits: 64,
index: 15,
CIDRBlock: "2001:db8:1234:f::/64",
description: "16th IP address indexed with IPv6 /64",
},
{
clusterCIDRStr: "2001:0db8:85a3::8a2e:0370:7334/50",
perNodeHostBits: 65,
index: 6425,
CIDRBlock: "2001:db8:85a3:3232::/63",
description: "6426th IP address indexed with IPv6 /63",
},
{
clusterCIDRStr: "2001:0db8::/32",
perNodeHostBits: 80,
index: 0,
CIDRBlock: "2001:db8::/48",
description: "1st IP address indexed with IPv6 /48",
},
{
clusterCIDRStr: "2001:0db8::/32",
perNodeHostBits: 80,
index: 15,
CIDRBlock: "2001:db8:f::/48",
description: "16th IP address indexed with IPv6 /48",
},
{
clusterCIDRStr: "2001:0db8:85a3::8a2e:0370:7334/32",
perNodeHostBits: 80,
index: 6425,
CIDRBlock: "2001:db8:1919::/48",
description: "6426th IP address indexed with IPv6 /48",
},
{
clusterCIDRStr: "2001:0db8:1234:ff00::/56",
perNodeHostBits: 56,
index: 0,
CIDRBlock: "2001:db8:1234:ff00::/72",
description: "1st IP address indexed with IPv6 /72",
},
{
clusterCIDRStr: "2001:0db8:1234:ff00::/56",
perNodeHostBits: 56,
index: 15,
CIDRBlock: "2001:db8:1234:ff00:f00::/72",
description: "16th IP address indexed with IPv6 /72",
},
{
clusterCIDRStr: "2001:0db8:1234:ff00::0370:7334/56",
perNodeHostBits: 56,
index: 6425,
CIDRBlock: "2001:db8:1234:ff19:1900::/72",
description: "6426th IP address indexed with IPv6 /72",
},
{
clusterCIDRStr: "2001:0db8:1234:0:1234::/80",
perNodeHostBits: 32,
index: 0,
CIDRBlock: "2001:db8:1234:0:1234::/96",
description: "1st IP address indexed with IPv6 /96",
},
{
clusterCIDRStr: "2001:0db8:1234:0:1234::/80",
perNodeHostBits: 32,
index: 15,
CIDRBlock: "2001:db8:1234:0:1234:f::/96",
description: "16th IP address indexed with IPv6 /96",
},
{
clusterCIDRStr: "2001:0db8:1234:ff00::0370:7334/80",
perNodeHostBits: 32,
index: 6425,
CIDRBlock: "2001:db8:1234:ff00:0:1919::/96",
description: "6426th IP address indexed with IPv6 /96",
},
}
for _, tc := range cases {
_, clusterCIDR, _ := utilnet.ParseCIDRSloppy(tc.clusterCIDRStr)
a, err := NewMultiCIDRSet(clusterCIDR, tc.perNodeHostBits)
if err != nil {
t.Fatalf("error for %v ", tc.description)
}
cidr, err := a.indexToCIDRBlock(tc.index)
if err != nil {
t.Fatalf("error for %v ", tc.description)
}
if cidr.String() != tc.CIDRBlock {
t.Fatalf("error for %v index %d %s", tc.description, tc.index, cidr.String())
}
}
}
func TestCIDRSet_RandomishAllocation(t *testing.T) {
cases := []struct {
clusterCIDRStr string
description string
}{
{
clusterCIDRStr: "127.123.234.0/16",
description: "RandomishAllocation with IPv4",
},
{
clusterCIDRStr: "beef:1234::/112",
description: "RandomishAllocation with IPv6",
},
}
for _, tc := range cases {
_, clusterCIDR, _ := utilnet.ParseCIDRSloppy(tc.clusterCIDRStr)
a, err := NewMultiCIDRSet(clusterCIDR, 8)
if err != nil {
t.Fatalf("Error allocating CIDRSet for %v", tc.description)
}
// allocate all the CIDRs.
var cidrs []*net.IPNet
for i := 0; i < 256; i++ {
if c, err := allocateNext(a); err == nil {
cidrs = append(cidrs, c)
} else {
t.Fatalf("unexpected error: %v for %v", err, tc.description)
}
}
_, err = allocateNext(a)
if err == nil {
t.Fatalf("expected error because of fully-allocated range for %v", tc.description)
}
// release all the CIDRs.
for i := 0; i < len(cidrs); i++ {
a.Release(cidrs[i])
}
// allocate the CIDRs again.
var rcidrs []*net.IPNet
for i := 0; i < 256; i++ {
if c, err := allocateNext(a); err == nil {
rcidrs = append(rcidrs, c)
} else {
t.Fatalf("unexpected error: %d, %v for %v", i, err, tc.description)
}
}
_, err = allocateNext(a)
if err == nil {
t.Fatalf("expected error because of fully-allocated range for %v", tc.description)
}
if !reflect.DeepEqual(cidrs, rcidrs) {
t.Fatalf("expected re-allocated cidrs are the same collection for %v", tc.description)
}
}
}
func TestCIDRSet_AllocationOccupied(t *testing.T) {
cases := []struct {
clusterCIDRStr string
description string
}{
{
clusterCIDRStr: "127.123.234.0/16",
description: "AllocationOccupied with IPv4",
},
{
clusterCIDRStr: "beef:1234::/112",
description: "AllocationOccupied with IPv6",
},
}
for _, tc := range cases {
_, clusterCIDR, _ := utilnet.ParseCIDRSloppy(tc.clusterCIDRStr)
a, err := NewMultiCIDRSet(clusterCIDR, 8)
if err != nil {
t.Fatalf("Error allocating CIDRSet for %v", tc.description)
}
// allocate all the CIDRs.
var cidrs []*net.IPNet
var numCIDRs = 256
for i := 0; i < numCIDRs; i++ {
if c, err := allocateNext(a); err == nil {
cidrs = append(cidrs, c)
} else {
t.Fatalf("unexpected error: %v for %v", err, tc.description)
}
}
_, err = allocateNext(a)
if err == nil {
t.Fatalf("expected error because of fully-allocated range for %v", tc.description)
}
// release all the CIDRs.
for i := 0; i < len(cidrs); i++ {
a.Release(cidrs[i])
}
// occupy the last 128 CIDRs.
for i := numCIDRs / 2; i < numCIDRs; i++ {
a.Occupy(cidrs[i])
}
// occupy the first of the last 128 again.
a.Occupy(cidrs[numCIDRs/2])
// allocate the first 128 CIDRs again.
var rcidrs []*net.IPNet
for i := 0; i < numCIDRs/2; i++ {
if c, err := allocateNext(a); err == nil {
rcidrs = append(rcidrs, c)
} else {
t.Fatalf("unexpected error: %d, %v for %v", i, err, tc.description)
}
}
_, err = allocateNext(a)
if err == nil {
t.Fatalf("expected error because of fully-allocated range for %v", tc.description)
}
// check Occupy() works properly.
for i := numCIDRs / 2; i < numCIDRs; i++ {
rcidrs = append(rcidrs, cidrs[i])
}
if !reflect.DeepEqual(cidrs, rcidrs) {
t.Fatalf("expected re-allocated cidrs are the same collection for %v", tc.description)
}
}
}
func TestDoubleOccupyRelease(t *testing.T) {
// Run a sequence of operations and check the number of occupied CIDRs
// after each one.
clusterCIDRStr := "10.42.0.0/16"
operations := []struct {
cidrStr string
operation string
numOccupied int
}{
// Occupy 1 element: +1
{
cidrStr: "10.42.5.0/24",
operation: "occupy",
numOccupied: 1,
},
// Occupy 1 more element: +1
{
cidrStr: "10.42.9.0/24",
operation: "occupy",
numOccupied: 2,
},
// Occupy 4 elements overlapping with one from the above: +3
{
cidrStr: "10.42.8.0/22",
operation: "occupy",
numOccupied: 5,
},
// Occupy an already-occupied element: no change
{
cidrStr: "10.42.9.0/24",
operation: "occupy",
numOccupied: 5,
},
// Release an coccupied element: -1
{
cidrStr: "10.42.9.0/24",
operation: "release",
numOccupied: 4,
},
// Release an unoccupied element: no change
{
cidrStr: "10.42.9.0/24",
operation: "release",
numOccupied: 4,
},
// Release 4 elements, only one of which is occupied: -1
{
cidrStr: "10.42.4.0/22",
operation: "release",
numOccupied: 3,
},
}
// Check that there are exactly that many allocatable CIDRs after all
// operations have been executed.
numAllocatable24s := (1 << 8) - 3
_, clusterCIDR, _ := utilnet.ParseCIDRSloppy(clusterCIDRStr)
a, err := NewMultiCIDRSet(clusterCIDR, 8)
if err != nil {
t.Fatalf("Error allocating CIDRSet")
}
// Execute the operations.
for _, op := range operations {
_, cidr, _ := utilnet.ParseCIDRSloppy(op.cidrStr)
switch op.operation {
case "occupy":
a.Occupy(cidr)
case "release":
a.Release(cidr)
default:
t.Fatalf("test error: unknown operation %v", op.operation)
}
if a.allocatedCIDRs != op.numOccupied {
t.Fatalf("CIDR %v Expected %d occupied CIDRS, got %d", cidr, op.numOccupied, a.allocatedCIDRs)
}
}
// Make sure that we can allocate exactly `numAllocatable24s` elements.
for i := 0; i < numAllocatable24s; i++ {
_, err := allocateNext(a)
if err != nil {
t.Fatalf("Expected to be able to allocate %d CIDRS, failed after %d", numAllocatable24s, i)
}
}
_, err = allocateNext(a)
if err == nil {
t.Fatalf("Expected to be able to allocate exactly %d CIDRS, got one more", numAllocatable24s)
}
}
func TestGetBitforCIDR(t *testing.T) {
cases := []struct {
clusterCIDRStr string
perNodeHostBits int
subNetCIDRStr string
expectedBit int
expectErr bool
description string
}{
{
clusterCIDRStr: "127.0.0.0/8",
perNodeHostBits: 16,
subNetCIDRStr: "127.0.0.0/16",
expectedBit: 0,
expectErr: false,
description: "Get 0 Bit with IPv4",
},
{
clusterCIDRStr: "be00::/8",
perNodeHostBits: 112,
subNetCIDRStr: "be00::/16",
expectedBit: 0,
expectErr: false,
description: "Get 0 Bit with IPv6",
},
{
clusterCIDRStr: "127.0.0.0/8",
perNodeHostBits: 16,
subNetCIDRStr: "127.123.0.0/16",
expectedBit: 123,
expectErr: false,
description: "Get 123rd Bit with IPv4",
},
{
clusterCIDRStr: "be00::/8",
perNodeHostBits: 112,
subNetCIDRStr: "beef::/16",
expectedBit: 0xef,
expectErr: false,
description: "Get xef Bit with IPv6",
},
{
clusterCIDRStr: "127.0.0.0/8",
perNodeHostBits: 16,
subNetCIDRStr: "127.168.0.0/16",
expectedBit: 168,
expectErr: false,
description: "Get 168th Bit with IPv4",
},
{
clusterCIDRStr: "be00::/8",
perNodeHostBits: 112,
subNetCIDRStr: "be68::/16",
expectedBit: 0x68,
expectErr: false,
description: "Get x68th Bit with IPv6",
},
{
clusterCIDRStr: "127.0.0.0/8",
perNodeHostBits: 16,
subNetCIDRStr: "127.224.0.0/16",
expectedBit: 224,
expectErr: false,
description: "Get 224th Bit with IPv4",
},
{
clusterCIDRStr: "be00::/8",
perNodeHostBits: 112,
subNetCIDRStr: "be24::/16",
expectedBit: 0x24,
expectErr: false,
description: "Get x24th Bit with IPv6",
},
{
clusterCIDRStr: "192.168.0.0/16",
perNodeHostBits: 8,
subNetCIDRStr: "192.168.12.0/24",
expectedBit: 12,
expectErr: false,
description: "Get 12th Bit with IPv4",
},
{
clusterCIDRStr: "beef::/16",
perNodeHostBits: 104,
subNetCIDRStr: "beef:1200::/24",
expectedBit: 0x12,
expectErr: false,
description: "Get x12th Bit with IPv6",
},
{
clusterCIDRStr: "192.168.0.0/16",
perNodeHostBits: 8,
subNetCIDRStr: "192.168.151.0/24",
expectedBit: 151,
expectErr: false,
description: "Get 151st Bit with IPv4",
},
{
clusterCIDRStr: "beef::/16",
perNodeHostBits: 104,
subNetCIDRStr: "beef:9700::/24",
expectedBit: 0x97,
expectErr: false,
description: "Get x97st Bit with IPv6",
},
{
clusterCIDRStr: "192.168.0.0/16",
perNodeHostBits: 8,
subNetCIDRStr: "127.168.224.0/24",
expectErr: true,
description: "Get error with IPv4",
},
{
clusterCIDRStr: "beef::/16",
perNodeHostBits: 104,
subNetCIDRStr: "2001:db00::/24",
expectErr: true,
description: "Get error with IPv6",
},
}
for _, tc := range cases {
_, clusterCIDR, err := utilnet.ParseCIDRSloppy(tc.clusterCIDRStr)
if err != nil {
t.Fatalf("unexpected error: %v for %v", err, tc.description)
}
cs, err := NewMultiCIDRSet(clusterCIDR, tc.perNodeHostBits)
if err != nil {
t.Fatalf("Error allocating CIDRSet for %v", tc.description)
}
_, subnetCIDR, err := utilnet.ParseCIDRSloppy(tc.subNetCIDRStr)
if err != nil {
t.Fatalf("unexpected error: %v for %v", err, tc.description)
}
got, err := cs.getIndexForCIDR(subnetCIDR)
if err == nil && tc.expectErr {
klog.Errorf("expected error but got null for %v", tc.description)
continue
}
if err != nil && !tc.expectErr {
klog.Errorf("unexpected error: %v for %v", err, tc.description)
continue
}
if got != tc.expectedBit {
klog.Errorf("expected %v, but got %v for %v", tc.expectedBit, got, tc.description)
}
}
}
func TestCIDRSetv6(t *testing.T) {
cases := []struct {
clusterCIDRStr string
perNodeHostBits int
expectedCIDR string
expectedCIDR2 string
expectErr bool
description string
}{
{
clusterCIDRStr: "127.0.0.0/8",
perNodeHostBits: 0,
expectErr: false,
expectedCIDR: "127.0.0.0/32",
expectedCIDR2: "127.0.0.1/32",
description: "Max cluster subnet size with IPv4",
},
{
clusterCIDRStr: "beef:1234::/32",
perNodeHostBits: 79,
expectErr: true,
description: "Max cluster subnet size with IPv6",
},
{
clusterCIDRStr: "2001:beef:1234:369b::/60",
perNodeHostBits: 64,
expectedCIDR: "2001:beef:1234:3690::/64",
expectedCIDR2: "2001:beef:1234:3691::/64",
expectErr: false,
description: "Allocate a few IPv6",
},
}
for _, tc := range cases {
t.Run(tc.description, func(t *testing.T) {
_, clusterCIDR, _ := utilnet.ParseCIDRSloppy(tc.clusterCIDRStr)
a, err := NewMultiCIDRSet(clusterCIDR, tc.perNodeHostBits)
if gotErr := err != nil; gotErr != tc.expectErr {
t.Fatalf("NewMultiCIDRSet(%v, %v) = %v, %v; gotErr = %t, want %t", clusterCIDR, tc.perNodeHostBits, a, err, gotErr, tc.expectErr)
}
if a == nil {
return
}
p, err := allocateNext(a)
if err == nil && tc.expectErr {
t.Errorf("allocateNext(a) = nil, want error")
}
if err != nil && !tc.expectErr {
t.Errorf("allocateNext(a) = %+v, want no error", err)
}
if !tc.expectErr {
if p != nil && p.String() != tc.expectedCIDR {
t.Fatalf("allocateNext(a) got %+v, want %+v", p.String(), tc.expectedCIDR)
}
}
p2, err := allocateNext(a)
if err == nil && tc.expectErr {
t.Errorf("allocateNext(a) = nil, want error")
}
if err != nil && !tc.expectErr {
t.Errorf("allocateNext(a) = %+v, want no error", err)
}
if !tc.expectErr {
if p2 != nil && p2.String() != tc.expectedCIDR2 {
t.Fatalf("allocateNext(a) got %+v, want %+v", p2.String(), tc.expectedCIDR)
}
}
})
}
}
func TestMultiCIDRSetMetrics(t *testing.T) {
cidr := "10.0.0.0/16"
_, clusterCIDR, _ := utilnet.ParseCIDRSloppy(cidr)
// We have 256 free cidrs
a, err := NewMultiCIDRSet(clusterCIDR, 8)
if err != nil {
t.Fatalf("unexpected error creating MultiCIDRSet: %v", err)
}
clearMetrics(map[string]string{"clusterCIDR": cidr})
// Allocate next all.
for i := 1; i <= 256; i++ {
_, err := allocateNext(a)
if err != nil {
t.Fatalf("unexpected error allocating a new CIDR: %v", err)
}
em := testMetrics{
usage: float64(i) / float64(256),
allocs: float64(i),
releases: 0,
allocTries: 0,
}
expectMetrics(t, cidr, em)
}
// Release all CIDRs.
a.Release(clusterCIDR)
em := testMetrics{
usage: 0,
allocs: 256,
releases: 256,
allocTries: 0,
}
expectMetrics(t, cidr, em)
// Allocate all CIDRs.
a.Occupy(clusterCIDR)
em = testMetrics{
usage: 1,
allocs: 512,
releases: 256,
allocTries: 0,
}
expectMetrics(t, cidr, em)
}
func TestMultiCIDRSetMetricsHistogram(t *testing.T) {
cidr := "10.0.0.0/16"
_, clusterCIDR, _ := utilnet.ParseCIDRSloppy(cidr)
// We have 256 free cidrs.
a, err := NewMultiCIDRSet(clusterCIDR, 8)
if err != nil {
t.Fatalf("unexpected error creating MultiCIDRSet: %v", err)
}
clearMetrics(map[string]string{"clusterCIDR": cidr})
// Allocate half of the range.
// Occupy does not update the nextCandidate.
_, halfClusterCIDR, _ := utilnet.ParseCIDRSloppy("10.0.0.0/17")
a.Occupy(halfClusterCIDR)
em := testMetrics{
usage: 0.5,
allocs: 128,
releases: 0,
}
expectMetrics(t, cidr, em)
// Allocate next should iterate until the next free cidr
// that is exactly the same number we allocated previously.
_, err = allocateNext(a)
if err != nil {
t.Fatalf("unexpected error allocating a new CIDR: %v", err)
}
em = testMetrics{
usage: float64(129) / float64(256),
allocs: 129,
releases: 0,
}
expectMetrics(t, cidr, em)
}
func TestMultiCIDRSetMetricsDual(t *testing.T) {
// create IPv4 cidrSet.
cidrIPv4 := "10.0.0.0/16"
_, clusterCIDRv4, _ := utilnet.ParseCIDRSloppy(cidrIPv4)
a, err := NewMultiCIDRSet(clusterCIDRv4, 8)
if err != nil {
t.Fatalf("unexpected error creating MultiCIDRSet: %v", err)
}
clearMetrics(map[string]string{"clusterCIDR": cidrIPv4})
// create IPv6 cidrSet.
cidrIPv6 := "2001:db8::/48"
_, clusterCIDRv6, _ := utilnet.ParseCIDRSloppy(cidrIPv6)
b, err := NewMultiCIDRSet(clusterCIDRv6, 64)
if err != nil {
t.Fatalf("unexpected error creating MultiCIDRSet: %v", err)
}
clearMetrics(map[string]string{"clusterCIDR": cidrIPv6})
// Allocate all.
a.Occupy(clusterCIDRv4)
em := testMetrics{
usage: 1,
allocs: 256,
releases: 0,
allocTries: 0,
}
expectMetrics(t, cidrIPv4, em)
b.Occupy(clusterCIDRv6)
em = testMetrics{
usage: 1,
allocs: 65536,
releases: 0,
allocTries: 0,
}
expectMetrics(t, cidrIPv6, em)
// Release all.
a.Release(clusterCIDRv4)
em = testMetrics{
usage: 0,
allocs: 256,
releases: 256,
allocTries: 0,
}
expectMetrics(t, cidrIPv4, em)
b.Release(clusterCIDRv6)
em = testMetrics{
usage: 0,
allocs: 65536,
releases: 65536,
allocTries: 0,
}
expectMetrics(t, cidrIPv6, em)
}
// Metrics helpers.
func clearMetrics(labels map[string]string) {
cidrSetAllocations.Delete(labels)
cidrSetReleases.Delete(labels)
cidrSetUsage.Delete(labels)
cidrSetAllocationTriesPerRequest.Delete(labels)
}
type testMetrics struct {
usage float64
allocs float64
releases float64
allocTries float64
}
func expectMetrics(t *testing.T, label string, em testMetrics) {
var m testMetrics
var err error
m.usage, err = testutil.GetGaugeMetricValue(cidrSetUsage.WithLabelValues(label))
if err != nil {
t.Errorf("failed to get %s value, err: %v", cidrSetUsage.Name, err)
}
m.allocs, err = testutil.GetCounterMetricValue(cidrSetAllocations.WithLabelValues(label))
if err != nil {
t.Errorf("failed to get %s value, err: %v", cidrSetAllocations.Name, err)
}
m.releases, err = testutil.GetCounterMetricValue(cidrSetReleases.WithLabelValues(label))
if err != nil {
t.Errorf("failed to get %s value, err: %v", cidrSetReleases.Name, err)
}
m.allocTries, err = testutil.GetHistogramMetricValue(cidrSetAllocationTriesPerRequest.WithLabelValues(label))
if err != nil {
t.Errorf("failed to get %s value, err: %v", cidrSetAllocationTriesPerRequest.Name, err)
}
if m != em {
t.Fatalf("metrics error: expected %v, received %v", em, m)
}
}
// Benchmarks
func benchmarkAllocateAllIPv6(cidr string, perNodeHostBits int, b *testing.B) {
_, clusterCIDR, _ := utilnet.ParseCIDRSloppy(cidr)
a, _ := NewMultiCIDRSet(clusterCIDR, perNodeHostBits)
for n := 0; n < b.N; n++ {
// Allocate the whole range + 1.
for i := 0; i <= a.MaxCIDRs; i++ {
allocateNext(a)
}
// Release all.
a.Release(clusterCIDR)
}
}
func BenchmarkAllocateAll_48_52(b *testing.B) { benchmarkAllocateAllIPv6("2001:db8::/48", 52, b) }
func BenchmarkAllocateAll_48_56(b *testing.B) { benchmarkAllocateAllIPv6("2001:db8::/48", 56, b) }
func BenchmarkAllocateAll_48_60(b *testing.B) { benchmarkAllocateAllIPv6("2001:db8::/48", 60, b) }
func BenchmarkAllocateAll_48_64(b *testing.B) { benchmarkAllocateAllIPv6("2001:db8::/48", 64, b) }
func BenchmarkAllocateAll_64_68(b *testing.B) { benchmarkAllocateAllIPv6("2001:db8::/64", 68, b) }
func BenchmarkAllocateAll_64_72(b *testing.B) { benchmarkAllocateAllIPv6("2001:db8::/64", 72, b) }
func BenchmarkAllocateAll_64_76(b *testing.B) { benchmarkAllocateAllIPv6("2001:db8::/64", 76, b) }
func BenchmarkAllocateAll_64_80(b *testing.B) { benchmarkAllocateAllIPv6("2001:db8::/64", 80, b) }