kubeshark/tap/tlstapper/bpf/openssl_uprobes.c
David Levanon 57f8a8dca9
Feature/fix tls not listening (#1046)
* avoid chunks with invalid address

* tls tapper should distict between pids

* prettfy tls verbose log and tls key

* support tls from multi threads + duplicate calls to the same target

* introduce fdCache and user address pair as tls key

* remove unused comment

* fix merge conflicts

* use lru for fdcache

* pr fixes - renaming

* fix conflict issue
2022-05-02 21:33:26 +03:00

277 lines
7.5 KiB
C

/*
Note: This file is licenced differently from the rest of the project
SPDX-License-Identifier: GPL-2.0
Copyright (C) UP9 Inc.
*/
#include "include/headers.h"
#include "include/util.h"
#include "include/maps.h"
#include "include/log.h"
#include "include/logger_messages.h"
#include "include/pids.h"
// Heap-like area for eBPF programs - stack size limited to 512 bytes, we must use maps for bigger (chunk) objects.
//
struct {
__uint(type, BPF_MAP_TYPE_PERCPU_ARRAY);
__uint(max_entries, 1);
__type(key, int);
__type(value, struct tlsChunk);
} heap SEC(".maps");
static __always_inline int get_count_bytes(struct pt_regs *ctx, struct ssl_info* info, __u64 id) {
int returnValue = PT_REGS_RC(ctx);
if (info->count_ptr == NULL) {
// ssl_read and ssl_write return the number of bytes written/read
//
return returnValue;
}
// ssl_read_ex and ssl_write_ex return 1 for success
//
if (returnValue != 1) {
return 0;
}
// ssl_read_ex and ssl_write_ex write the number of bytes to an arg named *count
//
size_t countBytes;
long err = bpf_probe_read(&countBytes, sizeof(size_t), (void*) info->count_ptr);
if (err != 0) {
log_error(ctx, LOG_ERROR_READING_BYTES_COUNT, id, err, 0l);
return 0;
}
return countBytes;
}
static __always_inline int add_address_to_chunk(struct pt_regs *ctx, struct tlsChunk* chunk, __u64 id, __u32 fd) {
__u32 pid = id >> 32;
__u64 key = (__u64) pid << 32 | fd;
struct fd_info *fdinfo = bpf_map_lookup_elem(&file_descriptor_to_ipv4, &key);
if (fdinfo == NULL) {
return 0;
}
int err = bpf_probe_read(chunk->address, sizeof(chunk->address), fdinfo->ipv4_addr);
chunk->flags |= (fdinfo->flags & FLAGS_IS_CLIENT_BIT);
if (err != 0) {
log_error(ctx, LOG_ERROR_READING_FD_ADDRESS, id, err, 0l);
return 0;
}
return 1;
}
static __always_inline void send_chunk_part(struct pt_regs *ctx, __u8* buffer, __u64 id,
struct tlsChunk* chunk, int start, int end) {
size_t recorded = MIN(end - start, sizeof(chunk->data));
if (recorded <= 0) {
return;
}
chunk->recorded = recorded;
chunk->start = start;
// This ugly trick is for the ebpf verifier happiness
//
long err = 0;
if (chunk->recorded == sizeof(chunk->data)) {
err = bpf_probe_read(chunk->data, sizeof(chunk->data), buffer + start);
} else {
recorded &= (sizeof(chunk->data) - 1); // Buffer must be N^2
err = bpf_probe_read(chunk->data, recorded, buffer + start);
}
if (err != 0) {
log_error(ctx, LOG_ERROR_READING_FROM_SSL_BUFFER, id, err, 0l);
return;
}
bpf_perf_event_output(ctx, &chunks_buffer, BPF_F_CURRENT_CPU, chunk, sizeof(struct tlsChunk));
}
static __always_inline void send_chunk(struct pt_regs *ctx, __u8* buffer, __u64 id, struct tlsChunk* chunk) {
// ebpf loops must be bounded at compile time, we can't use (i < chunk->len / CHUNK_SIZE)
//
// https://lwn.net/Articles/794934/
//
// However we want to run in kernel older than 5.3, hence we use "#pragma unroll" anyway
//
#pragma unroll
for (int i = 0; i < MAX_CHUNKS_PER_OPERATION; i++) {
if (chunk->len <= (CHUNK_SIZE * i)) {
break;
}
send_chunk_part(ctx, buffer, id, chunk, CHUNK_SIZE * i, chunk->len);
}
}
static __always_inline void output_ssl_chunk(struct pt_regs *ctx, struct ssl_info* info, __u64 id, __u32 flags) {
int countBytes = get_count_bytes(ctx, info, id);
if (countBytes <= 0) {
return;
}
if (countBytes > (CHUNK_SIZE * MAX_CHUNKS_PER_OPERATION)) {
log_error(ctx, LOG_ERROR_BUFFER_TOO_BIG, id, countBytes, 0l);
return;
}
struct tlsChunk* chunk;
int zero = 0;
// If other thread, running on the same CPU get to this point at the same time like us (context switch)
// the data will be corrupted - protection may be added in the future
//
chunk = bpf_map_lookup_elem(&heap, &zero);
if (!chunk) {
log_error(ctx, LOG_ERROR_ALLOCATING_CHUNK, id, 0l, 0l);
return;
}
chunk->flags = flags;
chunk->pid = id >> 32;
chunk->tgid = id;
chunk->len = countBytes;
chunk->fd = info->fd;
if (!add_address_to_chunk(ctx, chunk, id, chunk->fd)) {
// Without an address, we drop the chunk because there is not much to do with it in Go
//
return;
}
send_chunk(ctx, info->buffer, id, chunk);
}
static __always_inline void ssl_uprobe(struct pt_regs *ctx, void* ssl, void* buffer, int num, struct bpf_map_def* map_fd, size_t *count_ptr) {
__u64 id = bpf_get_current_pid_tgid();
if (!should_tap(id >> 32)) {
return;
}
struct ssl_info *infoPtr = bpf_map_lookup_elem(map_fd, &id);
struct ssl_info info = {};
if (infoPtr == NULL) {
info.fd = -1;
info.created_at_nano = bpf_ktime_get_ns();
} else {
long err = bpf_probe_read(&info, sizeof(struct ssl_info), infoPtr);
if (err != 0) {
log_error(ctx, LOG_ERROR_READING_SSL_CONTEXT, id, err, ORIGIN_SSL_UPROBE_CODE);
}
if ((bpf_ktime_get_ns() - info.created_at_nano) > SSL_INFO_MAX_TTL_NANO) {
// If the ssl info is too old, we don't want to use its info because it may be incorrect.
//
info.fd = -1;
info.created_at_nano = bpf_ktime_get_ns();
}
}
info.count_ptr = count_ptr;
info.buffer = buffer;
long err = bpf_map_update_elem(map_fd, &id, &info, BPF_ANY);
if (err != 0) {
log_error(ctx, LOG_ERROR_PUTTING_SSL_CONTEXT, id, err, 0l);
}
}
static __always_inline void ssl_uretprobe(struct pt_regs *ctx, struct bpf_map_def* map_fd, __u32 flags) {
__u64 id = bpf_get_current_pid_tgid();
if (!should_tap(id >> 32)) {
return;
}
struct ssl_info *infoPtr = bpf_map_lookup_elem(map_fd, &id);
if (infoPtr == NULL) {
log_error(ctx, LOG_ERROR_GETTING_SSL_CONTEXT, id, 0l, 0l);
return;
}
struct ssl_info info;
long err = bpf_probe_read(&info, sizeof(struct ssl_info), infoPtr);
// Do not clean map on purpose, sometimes there are two calls to ssl_read in a raw
// while the first call actually goes to read from socket, and we get the chance
// to find the fd. The other call already have all the information and we don't
// have the chance to get the fd.
//
// There are two risks keeping the map items
// 1. It gets full - we solve it by using BPF_MAP_TYPE_LRU_HASH with hard limit
// 2. We get wrong info of an old call - we solve it by comparing the timestamp
// info before using it
//
// bpf_map_delete_elem(map_fd, &id);
if (err != 0) {
log_error(ctx, LOG_ERROR_READING_SSL_CONTEXT, id, err, ORIGIN_SSL_URETPROBE_CODE);
return;
}
if (info.fd == -1) {
log_error(ctx, LOG_ERROR_MISSING_FILE_DESCRIPTOR, id, 0l, 0l);
return;
}
output_ssl_chunk(ctx, &info, id, flags);
}
SEC("uprobe/ssl_write")
void BPF_KPROBE(ssl_write, void* ssl, void* buffer, int num) {
ssl_uprobe(ctx, ssl, buffer, num, &ssl_write_context, 0);
}
SEC("uretprobe/ssl_write")
void BPF_KPROBE(ssl_ret_write) {
ssl_uretprobe(ctx, &ssl_write_context, 0);
}
SEC("uprobe/ssl_read")
void BPF_KPROBE(ssl_read, void* ssl, void* buffer, int num) {
ssl_uprobe(ctx, ssl, buffer, num, &ssl_read_context, 0);
}
SEC("uretprobe/ssl_read")
void BPF_KPROBE(ssl_ret_read) {
ssl_uretprobe(ctx, &ssl_read_context, FLAGS_IS_READ_BIT);
}
SEC("uprobe/ssl_write_ex")
void BPF_KPROBE(ssl_write_ex, void* ssl, void* buffer, size_t num, size_t *written) {
ssl_uprobe(ctx, ssl, buffer, num, &ssl_write_context, written);
}
SEC("uretprobe/ssl_write_ex")
void BPF_KPROBE(ssl_ret_write_ex) {
ssl_uretprobe(ctx, &ssl_write_context, 0);
}
SEC("uprobe/ssl_read_ex")
void BPF_KPROBE(ssl_read_ex, void* ssl, void* buffer, size_t num, size_t *readbytes) {
ssl_uprobe(ctx, ssl, buffer, num, &ssl_read_context, readbytes);
}
SEC("uretprobe/ssl_read_ex")
void BPF_KPROBE(ssl_ret_read_ex) {
ssl_uretprobe(ctx, &ssl_read_context, FLAGS_IS_READ_BIT);
}