mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-03 03:59:42 +00:00
community: add AzureOpenAIWhisperParser (#27796)
Commandeered from https://github.com/langchain-ai/langchain/pull/26757. --------- Co-authored-by: Sheepsta300 <128811766+Sheepsta300@users.noreply.github.com>
This commit is contained in:
@@ -1,7 +1,8 @@
|
||||
import io
|
||||
import logging
|
||||
import os
|
||||
import time
|
||||
from typing import Any, Dict, Iterator, Literal, Optional, Tuple, Union
|
||||
from typing import Any, Callable, Dict, Iterator, Literal, Optional, Tuple, Union
|
||||
|
||||
from langchain_core.documents import Document
|
||||
|
||||
@@ -12,6 +13,218 @@ from langchain_community.utils.openai import is_openai_v1
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class AzureOpenAIWhisperParser(BaseBlobParser):
|
||||
"""
|
||||
Transcribe and parse audio files using Azure OpenAI Whisper.
|
||||
|
||||
This parser integrates with the Azure OpenAI Whisper model to transcribe
|
||||
audio files. It differs from the standard OpenAI Whisper parser, requiring
|
||||
an Azure endpoint and credentials. The parser is limited to files under 25 MB.
|
||||
|
||||
**Note**:
|
||||
This parser uses the Azure OpenAI API, providing integration with the Azure
|
||||
ecosystem, and making it suitable for workflows involving other Azure services.
|
||||
|
||||
For files larger than 25 MB, consider using Azure AI Speech batch transcription:
|
||||
https://learn.microsoft.com/azure/ai-services/speech-service/batch-transcription-create?pivots=rest-api#use-a-whisper-model
|
||||
|
||||
Setup:
|
||||
1. Follow the instructions here to deploy Azure Whisper:
|
||||
https://learn.microsoft.com/azure/ai-services/openai/whisper-quickstart?tabs=command-line%2Cpython-new&pivots=programming-language-python
|
||||
2. Install ``langchain`` and set the following environment variables:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
pip install -U langchain langchain-community
|
||||
|
||||
export AZURE_OPENAI_API_KEY="your-api-key"
|
||||
export AZURE_OPENAI_ENDPOINT="https://your-endpoint.openai.azure.com/"
|
||||
export OPENAI_API_VERSION="your-api-version"
|
||||
|
||||
Example Usage:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain.community import AzureOpenAIWhisperParser
|
||||
|
||||
whisper_parser = AzureOpenAIWhisperParser(
|
||||
deployment_name="your-whisper-deployment",
|
||||
api_version="2024-06-01",
|
||||
api_key="your-api-key",
|
||||
# other params...
|
||||
)
|
||||
|
||||
audio_blob = Blob(path="your-audio-file-path")
|
||||
response = whisper_parser.lazy_parse(audio_blob)
|
||||
|
||||
for document in response:
|
||||
print(document.page_content)
|
||||
|
||||
Integration with Other Loaders:
|
||||
The AzureOpenAIWhisperParser can be used with video/audio loaders and
|
||||
`GenericLoader` to automate retrieval and parsing.
|
||||
|
||||
YoutubeAudioLoader Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_community.document_loaders.blob_loaders import (
|
||||
YoutubeAudioLoader
|
||||
)
|
||||
from langchain_community.document_loaders.generic import GenericLoader
|
||||
|
||||
# Must be a list
|
||||
youtube_url = ["https://your-youtube-url"]
|
||||
save_dir = "directory-to-download-videos"
|
||||
|
||||
loader = GenericLoader(
|
||||
YoutubeAudioLoader(youtube_url, save_dir),
|
||||
AzureOpenAIWhisperParser(deployment_name="your-deployment-name")
|
||||
)
|
||||
|
||||
docs = loader.load()
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
api_key: Optional[str] = None,
|
||||
azure_endpoint: Optional[str] = None,
|
||||
api_version: Optional[str] = None,
|
||||
azure_ad_token_provider: Union[Callable[[], str], None] = None,
|
||||
language: Optional[str] = None,
|
||||
prompt: Optional[str] = None,
|
||||
response_format: Union[
|
||||
Literal["json", "text", "srt", "verbose_json", "vtt"], None
|
||||
] = None,
|
||||
temperature: Optional[float] = None,
|
||||
deployment_name: str,
|
||||
max_retries: int = 3,
|
||||
):
|
||||
"""
|
||||
Initialize the AzureOpenAIWhisperParser.
|
||||
|
||||
Args:
|
||||
api_key (Optional[str]):
|
||||
Azure OpenAI API key. If not provided, defaults to the
|
||||
`AZURE_OPENAI_API_KEY` environment variable.
|
||||
azure_endpoint (Optional[str]):
|
||||
Azure OpenAI service endpoint. Defaults to `AZURE_OPENAI_ENDPOINT`
|
||||
environment variable if not set.
|
||||
api_version (Optional[str]):
|
||||
API version to use,
|
||||
defaults to the `OPENAI_API_VERSION` environment variable.
|
||||
azure_ad_token_provider (Union[Callable[[], str], None]):
|
||||
Azure Active Directory token for authentication (if applicable).
|
||||
language (Optional[str]):
|
||||
Language in which the request should be processed.
|
||||
prompt (Optional[str]):
|
||||
Custom instructions or prompt for the Whisper model.
|
||||
response_format (Union[str, None]):
|
||||
The desired output format. Options: "json", "text", "srt",
|
||||
"verbose_json", "vtt".
|
||||
temperature (Optional[float]):
|
||||
Controls the randomness of the model's output.
|
||||
deployment_name (str):
|
||||
The deployment name of the Whisper model.
|
||||
max_retries (int):
|
||||
Maximum number of retries for failed API requests.
|
||||
Raises:
|
||||
ImportError:
|
||||
If the required package `openai` is not installed.
|
||||
"""
|
||||
self.api_key = api_key or os.environ.get("AZURE_OPENAI_API_KEY")
|
||||
self.azure_endpoint = azure_endpoint or os.environ.get("AZURE_OPENAI_ENDPOINT")
|
||||
self.api_version = api_version or os.environ.get("OPENAI_API_VERSION")
|
||||
self.azure_ad_token_provider = azure_ad_token_provider
|
||||
|
||||
self.language = language
|
||||
self.prompt = prompt
|
||||
self.response_format = response_format
|
||||
self.temperature = temperature
|
||||
|
||||
self.deployment_name = deployment_name
|
||||
self.max_retries = max_retries
|
||||
|
||||
try:
|
||||
import openai
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"openai package not found, please install it with "
|
||||
"`pip install openai`"
|
||||
)
|
||||
|
||||
if is_openai_v1():
|
||||
self._client = openai.AzureOpenAI(
|
||||
api_key=self.api_key,
|
||||
azure_endpoint=self.azure_endpoint,
|
||||
api_version=self.api_version,
|
||||
max_retries=self.max_retries,
|
||||
azure_ad_token=self.azure_ad_token_provider,
|
||||
)
|
||||
else:
|
||||
if self.api_key:
|
||||
openai.api_key = self.api_key
|
||||
if self.azure_endpoint:
|
||||
openai.api_base = self.azure_endpoint
|
||||
if self.api_version:
|
||||
openai.api_version = self.api_version
|
||||
openai.api_type = "azure"
|
||||
self._client = openai
|
||||
|
||||
@property
|
||||
def _create_params(self) -> Dict[str, Any]:
|
||||
params = {
|
||||
"language": self.language,
|
||||
"prompt": self.prompt,
|
||||
"response_format": self.response_format,
|
||||
"temperature": self.temperature,
|
||||
}
|
||||
return {k: v for k, v in params.items() if v is not None}
|
||||
|
||||
def lazy_parse(self, blob: Blob) -> Iterator[Document]:
|
||||
"""
|
||||
Lazily parse the provided audio blob for transcription.
|
||||
|
||||
Args:
|
||||
blob (Blob):
|
||||
The audio file in Blob format to be transcribed.
|
||||
|
||||
Yields:
|
||||
Document:
|
||||
Parsed transcription from the audio file.
|
||||
|
||||
Raises:
|
||||
Exception:
|
||||
If an error occurs during transcription.
|
||||
"""
|
||||
|
||||
file_obj = open(str(blob.path), "rb")
|
||||
|
||||
# Transcribe
|
||||
try:
|
||||
if is_openai_v1():
|
||||
transcript = self._client.audio.transcriptions.create(
|
||||
model=self.deployment_name,
|
||||
file=file_obj,
|
||||
**self._create_params,
|
||||
)
|
||||
else:
|
||||
transcript = self._client.Audio.transcribe(
|
||||
model=self.deployment_name,
|
||||
deployment_id=self.deployment_name,
|
||||
file=file_obj,
|
||||
**self._create_params,
|
||||
)
|
||||
except Exception:
|
||||
raise
|
||||
|
||||
yield Document(
|
||||
page_content=transcript.text
|
||||
if not isinstance(transcript, str)
|
||||
else transcript,
|
||||
metadata={"source": blob.source},
|
||||
)
|
||||
|
||||
|
||||
class OpenAIWhisperParser(BaseBlobParser):
|
||||
"""Transcribe and parse audio files.
|
||||
|
||||
@@ -19,7 +232,7 @@ class OpenAIWhisperParser(BaseBlobParser):
|
||||
|
||||
Args:
|
||||
api_key: OpenAI API key
|
||||
chunk_duration_threshold: minimum duration of a chunk in seconds
|
||||
chunk_duration_threshold: Minimum duration of a chunk in seconds
|
||||
NOTE: According to the OpenAI API, the chunk duration should be at least 0.1
|
||||
seconds. If the chunk duration is less or equal than the threshold,
|
||||
it will be skipped.
|
||||
@@ -61,8 +274,6 @@ class OpenAIWhisperParser(BaseBlobParser):
|
||||
def lazy_parse(self, blob: Blob) -> Iterator[Document]:
|
||||
"""Lazily parse the blob."""
|
||||
|
||||
import io
|
||||
|
||||
try:
|
||||
import openai
|
||||
except ImportError:
|
||||
@@ -85,11 +296,11 @@ class OpenAIWhisperParser(BaseBlobParser):
|
||||
if self.api_key:
|
||||
openai.api_key = self.api_key
|
||||
if self.base_url:
|
||||
openai.base_url = self.base_url
|
||||
openai.api_base = self.base_url
|
||||
|
||||
# Audio file from disk
|
||||
audio = AudioSegment.from_file(blob.path)
|
||||
|
||||
audio = AudioSegment.from_file(blob.path)
|
||||
# Define the duration of each chunk in minutes
|
||||
# Need to meet 25MB size limit for Whisper API
|
||||
chunk_duration = 20
|
||||
@@ -240,8 +451,6 @@ class OpenAIWhisperParserLocal(BaseBlobParser):
|
||||
def lazy_parse(self, blob: Blob) -> Iterator[Document]:
|
||||
"""Lazily parse the blob."""
|
||||
|
||||
import io
|
||||
|
||||
try:
|
||||
from pydub import AudioSegment
|
||||
except ImportError:
|
||||
@@ -436,8 +645,6 @@ class FasterWhisperParser(BaseBlobParser):
|
||||
def lazy_parse(self, blob: Blob) -> Iterator[Document]:
|
||||
"""Lazily parse the blob."""
|
||||
|
||||
import io
|
||||
|
||||
try:
|
||||
from pydub import AudioSegment
|
||||
except ImportError:
|
||||
|
Reference in New Issue
Block a user