mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-31 03:59:25 +00:00
power bi api wrapper integration tests & bug fix (#4983)
# Powerbi API wrapper bug fix + integration tests - Bug fix by removing `TYPE_CHECKING` in in utilities/powerbi.py - Added integration test for power bi api in utilities/test_powerbi_api.py - Added integration test for power bi agent in agent/test_powerbi_agent.py - Edited .env.examples to help set up power bi related environment variables - Updated demo notebook with working code in docs../examples/powerbi.ipynb - AzureOpenAI -> ChatOpenAI Notes: Chat models (gpt3.5, gpt4) are much more capable than davinci at writing DAX queries, so that is important to getting the agent to work properly. Interestingly, gpt3.5-turbo needed the examples=DEFAULT_FEWSHOT_EXAMPLES to write consistent DAX queries, so gpt4 seems necessary as the smart llm. Fixes #4325 ## Before submitting Azure-core and Azure-identity are necessary dependencies check integration tests with the following: `pytest tests/integration_tests/utilities/test_powerbi_api.py` `pytest tests/integration_tests/agent/test_powerbi_agent.py` You will need a power bi account with a dataset id + table name in order to test. See .env.examples for details. ## Who can review? @hwchase17 @vowelparrot --------- Co-authored-by: aditya-pethe <adityapethe1@gmail.com>
This commit is contained in:
parent
e68dfa7062
commit
06e524416c
@ -1,10 +1,7 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"id": "0e499e90-7a6d-4fab-8aab-31a4df417601",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# PowerBI Dataset Agent\n",
|
||||
"\n",
|
||||
@ -17,46 +14,41 @@
|
||||
"- You can also supply a username to impersonate for use with datasets that have RLS enabled. \n",
|
||||
"- The toolkit uses a LLM to create the query from the question, the agent uses the LLM for the overall execution.\n",
|
||||
"- Testing was done mostly with a `text-davinci-003` model, codex models did not seem to perform ver well."
|
||||
]
|
||||
],
|
||||
"metadata": {},
|
||||
"attachments": {}
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "ec927ac6-9b2a-4e8a-9a6e-3e429191875c",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"source": [
|
||||
"## Initialization"
|
||||
]
|
||||
],
|
||||
"metadata": {
|
||||
"tags": []
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "53422913-967b-4f2a-8022-00269c1be1b1",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.agents.agent_toolkits import create_pbi_agent\n",
|
||||
"from langchain.agents.agent_toolkits import PowerBIToolkit\n",
|
||||
"from langchain.utilities.powerbi import PowerBIDataset\n",
|
||||
"from langchain.llms.openai import AzureOpenAI\n",
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.agents import AgentExecutor\n",
|
||||
"from azure.identity import DefaultAzureCredential"
|
||||
]
|
||||
],
|
||||
"outputs": [],
|
||||
"metadata": {
|
||||
"tags": []
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "090f3699-79c6-4ce1-ab96-a94f0121fd64",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"fast_llm = AzureOpenAI(temperature=0.5, max_tokens=1000, deployment_name=\"gpt-35-turbo\", verbose=True)\n",
|
||||
"smart_llm = AzureOpenAI(temperature=0, max_tokens=100, deployment_name=\"gpt-4\", verbose=True)\n",
|
||||
"fast_llm = ChatOpenAI(temperature=0.5, max_tokens=1000, model_name=\"gpt-3.5-turbo\", verbose=True)\n",
|
||||
"smart_llm = ChatOpenAI(temperature=0, max_tokens=100, model_name=\"gpt-4\", verbose=True)\n",
|
||||
"\n",
|
||||
"toolkit = PowerBIToolkit(\n",
|
||||
" powerbi=PowerBIDataset(dataset_id=\"<dataset_id>\", table_names=['table1', 'table2'], credential=DefaultAzureCredential()), \n",
|
||||
@ -68,97 +60,90 @@
|
||||
" toolkit=toolkit,\n",
|
||||
" verbose=True,\n",
|
||||
")"
|
||||
]
|
||||
],
|
||||
"outputs": [],
|
||||
"metadata": {
|
||||
"tags": []
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "36ae48c7-cb08-4fef-977e-c7d4b96a464b",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Example: describing a table"
|
||||
]
|
||||
],
|
||||
"metadata": {}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "ff70e83d-5ad0-4fc7-bb96-27d82ac166d7",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"agent_executor.run(\"Describe table1\")"
|
||||
]
|
||||
],
|
||||
"outputs": [],
|
||||
"metadata": {
|
||||
"tags": []
|
||||
}
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"id": "9abcfe8e-1868-42a4-8345-ad2d9b44c681",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Example: simple query on a table\n",
|
||||
"In this example, the agent actually figures out the correct query to get a row count of the table."
|
||||
]
|
||||
],
|
||||
"metadata": {},
|
||||
"attachments": {}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "bea76658-a65b-47e2-b294-6d52c5556246",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"agent_executor.run(\"How many records are in table1?\")"
|
||||
]
|
||||
],
|
||||
"outputs": [],
|
||||
"metadata": {
|
||||
"tags": []
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "6fbc26af-97e4-4a21-82aa-48bdc992da26",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Example: running queries"
|
||||
]
|
||||
],
|
||||
"metadata": {}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "17bea710-4a23-4de0-b48e-21d57be48293",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"agent_executor.run(\"How many records are there by dimension1 in table2?\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "474dddda-c067-4eeb-98b1-e763ee78b18c",
|
||||
],
|
||||
"outputs": [],
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"agent_executor.run(\"What unique values are there for dimensions2 in table2\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"id": "6fd950e4",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Example: add your own few-shot prompts"
|
||||
]
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "87d677f9",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"agent_executor.run(\"What unique values are there for dimensions2 in table2\")"
|
||||
],
|
||||
"outputs": [],
|
||||
"metadata": {
|
||||
"tags": []
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"## Example: add your own few-shot prompts"
|
||||
],
|
||||
"metadata": {},
|
||||
"attachments": {}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"source": [
|
||||
"#fictional example\n",
|
||||
"few_shots = \"\"\"\n",
|
||||
@ -182,24 +167,24 @@
|
||||
" toolkit=toolkit,\n",
|
||||
" verbose=True,\n",
|
||||
")"
|
||||
]
|
||||
],
|
||||
"outputs": [],
|
||||
"metadata": {}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "33f4bb43",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"agent_executor.run(\"What was the maximum of value in revenue in dollars in 2022?\")"
|
||||
]
|
||||
],
|
||||
"outputs": [],
|
||||
"metadata": {}
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
"name": "python3",
|
||||
"display_name": "Python 3.9.16 64-bit"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
@ -211,9 +196,12 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.5"
|
||||
"version": "3.9.16"
|
||||
},
|
||||
"interpreter": {
|
||||
"hash": "397704579725e15f5c7cb49fe5f0341eb7531c82d19f2c29d197e8b64ab5776b"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
}
|
@ -1,11 +1,10 @@
|
||||
"""Wrapper around a Power BI endpoint."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import logging
|
||||
import os
|
||||
from copy import deepcopy
|
||||
from typing import TYPE_CHECKING, Any, Dict, Iterable, List, Optional, Union
|
||||
from typing import Any, Dict, Iterable, List, Optional, Union
|
||||
|
||||
import aiohttp
|
||||
import requests
|
||||
@ -17,8 +16,13 @@ _LOGGER = logging.getLogger(__name__)
|
||||
|
||||
BASE_URL = os.getenv("POWERBI_BASE_URL", "https://api.powerbi.com/v1.0/myorg")
|
||||
|
||||
if TYPE_CHECKING:
|
||||
try:
|
||||
from azure.core.credentials import TokenCredential
|
||||
except ImportError:
|
||||
_LOGGER.log(
|
||||
logging.WARNING,
|
||||
"Could not import azure.core python package.",
|
||||
)
|
||||
|
||||
|
||||
class PowerBIDataset(BaseModel):
|
||||
@ -67,8 +71,8 @@ class PowerBIDataset(BaseModel):
|
||||
"Content-Type": "application/json",
|
||||
"Authorization": "Bearer " + self.token,
|
||||
}
|
||||
from azure.core.exceptions import ( # pylint: disable=import-outside-toplevel
|
||||
ClientAuthenticationError,
|
||||
from azure.core.exceptions import (
|
||||
ClientAuthenticationError, # pylint: disable=import-outside-toplevel
|
||||
)
|
||||
|
||||
if self.credential:
|
||||
|
@ -14,4 +14,12 @@ PINECONE_ENVIRONMENT=us-west4-gcp
|
||||
# more details here: https://confluence.atlassian.com/enterprise/using-personal-access-tokens-1026032365.html
|
||||
# JIRA_API_TOKEN=your_jira_api_token_here
|
||||
# JIRA_USERNAME=your_jira_username_here
|
||||
# JIRA_INSTANCE_URL=your_jira_instance_url_here
|
||||
# JIRA_INSTANCE_URL=your_jira_instance_url_here
|
||||
|
||||
|
||||
# power bi
|
||||
# sign in to azure in order to authenticate with DefaultAzureCredentials
|
||||
# details here https://learn.microsoft.com/en-us/dotnet/api/azure.identity.defaultazurecredential?view=azure-dotnet
|
||||
POWERBI_DATASET_ID=_powerbi_dataset_id_here
|
||||
POWERBI_TABLE_NAME=_test_table_name_here
|
||||
POWERBI_NUMROWS=_num_rows_in_your_test_table
|
47
tests/integration_tests/agent/test_powerbi_agent.py
Normal file
47
tests/integration_tests/agent/test_powerbi_agent.py
Normal file
@ -0,0 +1,47 @@
|
||||
import pytest
|
||||
|
||||
from langchain.agents.agent_toolkits import PowerBIToolkit, create_pbi_agent
|
||||
from langchain.chat_models import ChatOpenAI
|
||||
from langchain.utilities.powerbi import PowerBIDataset
|
||||
from langchain.utils import get_from_env
|
||||
|
||||
|
||||
def azure_installed() -> bool:
|
||||
try:
|
||||
from azure.core.credentials import TokenCredential # noqa: F401
|
||||
from azure.identity import DefaultAzureCredential # noqa: F401
|
||||
|
||||
return True
|
||||
except Exception as e:
|
||||
print(f"azure not installed, skipping test {e}")
|
||||
return False
|
||||
|
||||
|
||||
@pytest.mark.skipif(not azure_installed(), reason="requires azure package")
|
||||
def test_daxquery() -> None:
|
||||
from azure.identity import DefaultAzureCredential
|
||||
|
||||
DATASET_ID = get_from_env("", "POWERBI_DATASET_ID")
|
||||
TABLE_NAME = get_from_env("", "POWERBI_TABLE_NAME")
|
||||
NUM_ROWS = get_from_env("", "POWERBI_NUMROWS")
|
||||
|
||||
fast_llm = ChatOpenAI(
|
||||
temperature=0.5, max_tokens=1000, model_name="gpt-3.5-turbo", verbose=True
|
||||
)
|
||||
smart_llm = ChatOpenAI(
|
||||
temperature=0, max_tokens=100, model_name="gpt-4", verbose=True
|
||||
)
|
||||
|
||||
toolkit = PowerBIToolkit(
|
||||
powerbi=PowerBIDataset(
|
||||
dataset_id=DATASET_ID,
|
||||
table_names=[TABLE_NAME],
|
||||
credential=DefaultAzureCredential(),
|
||||
),
|
||||
llm=smart_llm,
|
||||
)
|
||||
|
||||
agent_executor = create_pbi_agent(llm=fast_llm, toolkit=toolkit, verbose=True)
|
||||
|
||||
output = agent_executor.run(f"How many rows are in the table, {TABLE_NAME}")
|
||||
assert NUM_ROWS in output
|
36
tests/integration_tests/utilities/test_powerbi_api.py
Normal file
36
tests/integration_tests/utilities/test_powerbi_api.py
Normal file
@ -0,0 +1,36 @@
|
||||
"""Integration test for POWERBI API Wrapper."""
|
||||
import pytest
|
||||
|
||||
from langchain.utilities.powerbi import PowerBIDataset
|
||||
from langchain.utils import get_from_env
|
||||
|
||||
|
||||
def azure_installed() -> bool:
|
||||
try:
|
||||
from azure.core.credentials import TokenCredential # noqa: F401
|
||||
from azure.identity import DefaultAzureCredential # noqa: F401
|
||||
|
||||
return True
|
||||
except Exception as e:
|
||||
print(f"azure not installed, skipping test {e}")
|
||||
return False
|
||||
|
||||
|
||||
@pytest.mark.skipif(not azure_installed(), reason="requires azure package")
|
||||
def test_daxquery() -> None:
|
||||
from azure.identity import DefaultAzureCredential
|
||||
|
||||
DATASET_ID = get_from_env("", "POWERBI_DATASET_ID")
|
||||
TABLE_NAME = get_from_env("", "POWERBI_TABLE_NAME")
|
||||
NUM_ROWS = get_from_env("", "POWERBI_NUMROWS")
|
||||
|
||||
powerbi = PowerBIDataset(
|
||||
dataset_id=DATASET_ID,
|
||||
table_names=[TABLE_NAME],
|
||||
credential=DefaultAzureCredential(),
|
||||
)
|
||||
|
||||
output = powerbi.run(f'EVALUATE ROW("RowCount", COUNTROWS({TABLE_NAME}))')
|
||||
numrows = str(output["results"][0]["tables"][0]["rows"][0]["[RowCount]"])
|
||||
|
||||
assert NUM_ROWS == numrows
|
0
tests/unit_tests/tools/powerbi/__init__.py
Normal file
0
tests/unit_tests/tools/powerbi/__init__.py
Normal file
10
tests/unit_tests/tools/powerbi/test_powerbi.py
Normal file
10
tests/unit_tests/tools/powerbi/test_powerbi.py
Normal file
@ -0,0 +1,10 @@
|
||||
def test_power_bi_can_be_imported() -> None:
|
||||
"""Test that powerbi tools can be imported.
|
||||
|
||||
The goal of this test is to verify that langchain users will not get import errors
|
||||
when loading powerbi related code if they don't have optional dependencies
|
||||
installed.
|
||||
"""
|
||||
from langchain.tools.powerbi.tool import QueryPowerBITool # noqa
|
||||
from langchain.agents.agent_toolkits import PowerBIToolkit, create_pbi_agent # noqa
|
||||
from langchain.utilities.powerbi import PowerBIDataset # noqa
|
Loading…
Reference in New Issue
Block a user