mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-02 21:23:32 +00:00
power bi api wrapper integration tests & bug fix (#4983)
# Powerbi API wrapper bug fix + integration tests - Bug fix by removing `TYPE_CHECKING` in in utilities/powerbi.py - Added integration test for power bi api in utilities/test_powerbi_api.py - Added integration test for power bi agent in agent/test_powerbi_agent.py - Edited .env.examples to help set up power bi related environment variables - Updated demo notebook with working code in docs../examples/powerbi.ipynb - AzureOpenAI -> ChatOpenAI Notes: Chat models (gpt3.5, gpt4) are much more capable than davinci at writing DAX queries, so that is important to getting the agent to work properly. Interestingly, gpt3.5-turbo needed the examples=DEFAULT_FEWSHOT_EXAMPLES to write consistent DAX queries, so gpt4 seems necessary as the smart llm. Fixes #4325 ## Before submitting Azure-core and Azure-identity are necessary dependencies check integration tests with the following: `pytest tests/integration_tests/utilities/test_powerbi_api.py` `pytest tests/integration_tests/agent/test_powerbi_agent.py` You will need a power bi account with a dataset id + table name in order to test. See .env.examples for details. ## Who can review? @hwchase17 @vowelparrot --------- Co-authored-by: aditya-pethe <adityapethe1@gmail.com>
This commit is contained in:
parent
e68dfa7062
commit
06e524416c
@ -1,10 +1,7 @@
|
|||||||
{
|
{
|
||||||
"cells": [
|
"cells": [
|
||||||
{
|
{
|
||||||
"attachments": {},
|
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "0e499e90-7a6d-4fab-8aab-31a4df417601",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
"source": [
|
||||||
"# PowerBI Dataset Agent\n",
|
"# PowerBI Dataset Agent\n",
|
||||||
"\n",
|
"\n",
|
||||||
@ -17,46 +14,41 @@
|
|||||||
"- You can also supply a username to impersonate for use with datasets that have RLS enabled. \n",
|
"- You can also supply a username to impersonate for use with datasets that have RLS enabled. \n",
|
||||||
"- The toolkit uses a LLM to create the query from the question, the agent uses the LLM for the overall execution.\n",
|
"- The toolkit uses a LLM to create the query from the question, the agent uses the LLM for the overall execution.\n",
|
||||||
"- Testing was done mostly with a `text-davinci-003` model, codex models did not seem to perform ver well."
|
"- Testing was done mostly with a `text-davinci-003` model, codex models did not seem to perform ver well."
|
||||||
]
|
],
|
||||||
|
"metadata": {},
|
||||||
|
"attachments": {}
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "ec927ac6-9b2a-4e8a-9a6e-3e429191875c",
|
|
||||||
"metadata": {
|
|
||||||
"tags": []
|
|
||||||
},
|
|
||||||
"source": [
|
"source": [
|
||||||
"## Initialization"
|
"## Initialization"
|
||||||
]
|
],
|
||||||
|
"metadata": {
|
||||||
|
"tags": []
|
||||||
|
}
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": null,
|
"execution_count": null,
|
||||||
"id": "53422913-967b-4f2a-8022-00269c1be1b1",
|
|
||||||
"metadata": {
|
|
||||||
"tags": []
|
|
||||||
},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
"source": [
|
||||||
"from langchain.agents.agent_toolkits import create_pbi_agent\n",
|
"from langchain.agents.agent_toolkits import create_pbi_agent\n",
|
||||||
"from langchain.agents.agent_toolkits import PowerBIToolkit\n",
|
"from langchain.agents.agent_toolkits import PowerBIToolkit\n",
|
||||||
"from langchain.utilities.powerbi import PowerBIDataset\n",
|
"from langchain.utilities.powerbi import PowerBIDataset\n",
|
||||||
"from langchain.llms.openai import AzureOpenAI\n",
|
"from langchain.chat_models import ChatOpenAI\n",
|
||||||
"from langchain.agents import AgentExecutor\n",
|
"from langchain.agents import AgentExecutor\n",
|
||||||
"from azure.identity import DefaultAzureCredential"
|
"from azure.identity import DefaultAzureCredential"
|
||||||
]
|
],
|
||||||
|
"outputs": [],
|
||||||
|
"metadata": {
|
||||||
|
"tags": []
|
||||||
|
}
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": null,
|
"execution_count": null,
|
||||||
"id": "090f3699-79c6-4ce1-ab96-a94f0121fd64",
|
|
||||||
"metadata": {
|
|
||||||
"tags": []
|
|
||||||
},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
"source": [
|
||||||
"fast_llm = AzureOpenAI(temperature=0.5, max_tokens=1000, deployment_name=\"gpt-35-turbo\", verbose=True)\n",
|
"fast_llm = ChatOpenAI(temperature=0.5, max_tokens=1000, model_name=\"gpt-3.5-turbo\", verbose=True)\n",
|
||||||
"smart_llm = AzureOpenAI(temperature=0, max_tokens=100, deployment_name=\"gpt-4\", verbose=True)\n",
|
"smart_llm = ChatOpenAI(temperature=0, max_tokens=100, model_name=\"gpt-4\", verbose=True)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"toolkit = PowerBIToolkit(\n",
|
"toolkit = PowerBIToolkit(\n",
|
||||||
" powerbi=PowerBIDataset(dataset_id=\"<dataset_id>\", table_names=['table1', 'table2'], credential=DefaultAzureCredential()), \n",
|
" powerbi=PowerBIDataset(dataset_id=\"<dataset_id>\", table_names=['table1', 'table2'], credential=DefaultAzureCredential()), \n",
|
||||||
@ -68,97 +60,90 @@
|
|||||||
" toolkit=toolkit,\n",
|
" toolkit=toolkit,\n",
|
||||||
" verbose=True,\n",
|
" verbose=True,\n",
|
||||||
")"
|
")"
|
||||||
]
|
],
|
||||||
|
"outputs": [],
|
||||||
|
"metadata": {
|
||||||
|
"tags": []
|
||||||
|
}
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "36ae48c7-cb08-4fef-977e-c7d4b96a464b",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
"source": [
|
||||||
"## Example: describing a table"
|
"## Example: describing a table"
|
||||||
]
|
],
|
||||||
|
"metadata": {}
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": null,
|
"execution_count": null,
|
||||||
"id": "ff70e83d-5ad0-4fc7-bb96-27d82ac166d7",
|
|
||||||
"metadata": {
|
|
||||||
"tags": []
|
|
||||||
},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
"source": [
|
||||||
"agent_executor.run(\"Describe table1\")"
|
"agent_executor.run(\"Describe table1\")"
|
||||||
]
|
],
|
||||||
|
"outputs": [],
|
||||||
|
"metadata": {
|
||||||
|
"tags": []
|
||||||
|
}
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"attachments": {},
|
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "9abcfe8e-1868-42a4-8345-ad2d9b44c681",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
"source": [
|
||||||
"## Example: simple query on a table\n",
|
"## Example: simple query on a table\n",
|
||||||
"In this example, the agent actually figures out the correct query to get a row count of the table."
|
"In this example, the agent actually figures out the correct query to get a row count of the table."
|
||||||
]
|
],
|
||||||
|
"metadata": {},
|
||||||
|
"attachments": {}
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": null,
|
"execution_count": null,
|
||||||
"id": "bea76658-a65b-47e2-b294-6d52c5556246",
|
|
||||||
"metadata": {
|
|
||||||
"tags": []
|
|
||||||
},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
"source": [
|
||||||
"agent_executor.run(\"How many records are in table1?\")"
|
"agent_executor.run(\"How many records are in table1?\")"
|
||||||
]
|
],
|
||||||
|
"outputs": [],
|
||||||
|
"metadata": {
|
||||||
|
"tags": []
|
||||||
|
}
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "6fbc26af-97e4-4a21-82aa-48bdc992da26",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
"source": [
|
||||||
"## Example: running queries"
|
"## Example: running queries"
|
||||||
]
|
],
|
||||||
|
"metadata": {}
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": null,
|
"execution_count": null,
|
||||||
"id": "17bea710-4a23-4de0-b48e-21d57be48293",
|
|
||||||
"metadata": {
|
|
||||||
"tags": []
|
|
||||||
},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
"source": [
|
||||||
"agent_executor.run(\"How many records are there by dimension1 in table2?\")"
|
"agent_executor.run(\"How many records are there by dimension1 in table2?\")"
|
||||||
]
|
],
|
||||||
},
|
"outputs": [],
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "474dddda-c067-4eeb-98b1-e763ee78b18c",
|
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"tags": []
|
"tags": []
|
||||||
},
|
}
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"agent_executor.run(\"What unique values are there for dimensions2 in table2\")"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"attachments": {},
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"id": "6fd950e4",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"## Example: add your own few-shot prompts"
|
|
||||||
]
|
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": null,
|
"execution_count": null,
|
||||||
"id": "87d677f9",
|
"source": [
|
||||||
"metadata": {},
|
"agent_executor.run(\"What unique values are there for dimensions2 in table2\")"
|
||||||
|
],
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
|
"metadata": {
|
||||||
|
"tags": []
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"source": [
|
||||||
|
"## Example: add your own few-shot prompts"
|
||||||
|
],
|
||||||
|
"metadata": {},
|
||||||
|
"attachments": {}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
"source": [
|
"source": [
|
||||||
"#fictional example\n",
|
"#fictional example\n",
|
||||||
"few_shots = \"\"\"\n",
|
"few_shots = \"\"\"\n",
|
||||||
@ -182,24 +167,24 @@
|
|||||||
" toolkit=toolkit,\n",
|
" toolkit=toolkit,\n",
|
||||||
" verbose=True,\n",
|
" verbose=True,\n",
|
||||||
")"
|
")"
|
||||||
]
|
],
|
||||||
|
"outputs": [],
|
||||||
|
"metadata": {}
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": null,
|
"execution_count": null,
|
||||||
"id": "33f4bb43",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
"source": [
|
||||||
"agent_executor.run(\"What was the maximum of value in revenue in dollars in 2022?\")"
|
"agent_executor.run(\"What was the maximum of value in revenue in dollars in 2022?\")"
|
||||||
]
|
],
|
||||||
|
"outputs": [],
|
||||||
|
"metadata": {}
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"kernelspec": {
|
"kernelspec": {
|
||||||
"display_name": "Python 3 (ipykernel)",
|
"name": "python3",
|
||||||
"language": "python",
|
"display_name": "Python 3.9.16 64-bit"
|
||||||
"name": "python3"
|
|
||||||
},
|
},
|
||||||
"language_info": {
|
"language_info": {
|
||||||
"codemirror_mode": {
|
"codemirror_mode": {
|
||||||
@ -211,9 +196,12 @@
|
|||||||
"name": "python",
|
"name": "python",
|
||||||
"nbconvert_exporter": "python",
|
"nbconvert_exporter": "python",
|
||||||
"pygments_lexer": "ipython3",
|
"pygments_lexer": "ipython3",
|
||||||
"version": "3.10.5"
|
"version": "3.9.16"
|
||||||
|
},
|
||||||
|
"interpreter": {
|
||||||
|
"hash": "397704579725e15f5c7cb49fe5f0341eb7531c82d19f2c29d197e8b64ab5776b"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"nbformat": 4,
|
"nbformat": 4,
|
||||||
"nbformat_minor": 5
|
"nbformat_minor": 5
|
||||||
}
|
}
|
@ -1,11 +1,10 @@
|
|||||||
"""Wrapper around a Power BI endpoint."""
|
"""Wrapper around a Power BI endpoint."""
|
||||||
|
|
||||||
from __future__ import annotations
|
from __future__ import annotations
|
||||||
|
|
||||||
import logging
|
import logging
|
||||||
import os
|
import os
|
||||||
from copy import deepcopy
|
from copy import deepcopy
|
||||||
from typing import TYPE_CHECKING, Any, Dict, Iterable, List, Optional, Union
|
from typing import Any, Dict, Iterable, List, Optional, Union
|
||||||
|
|
||||||
import aiohttp
|
import aiohttp
|
||||||
import requests
|
import requests
|
||||||
@ -17,8 +16,13 @@ _LOGGER = logging.getLogger(__name__)
|
|||||||
|
|
||||||
BASE_URL = os.getenv("POWERBI_BASE_URL", "https://api.powerbi.com/v1.0/myorg")
|
BASE_URL = os.getenv("POWERBI_BASE_URL", "https://api.powerbi.com/v1.0/myorg")
|
||||||
|
|
||||||
if TYPE_CHECKING:
|
try:
|
||||||
from azure.core.credentials import TokenCredential
|
from azure.core.credentials import TokenCredential
|
||||||
|
except ImportError:
|
||||||
|
_LOGGER.log(
|
||||||
|
logging.WARNING,
|
||||||
|
"Could not import azure.core python package.",
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
class PowerBIDataset(BaseModel):
|
class PowerBIDataset(BaseModel):
|
||||||
@ -67,8 +71,8 @@ class PowerBIDataset(BaseModel):
|
|||||||
"Content-Type": "application/json",
|
"Content-Type": "application/json",
|
||||||
"Authorization": "Bearer " + self.token,
|
"Authorization": "Bearer " + self.token,
|
||||||
}
|
}
|
||||||
from azure.core.exceptions import ( # pylint: disable=import-outside-toplevel
|
from azure.core.exceptions import (
|
||||||
ClientAuthenticationError,
|
ClientAuthenticationError, # pylint: disable=import-outside-toplevel
|
||||||
)
|
)
|
||||||
|
|
||||||
if self.credential:
|
if self.credential:
|
||||||
|
@ -14,4 +14,12 @@ PINECONE_ENVIRONMENT=us-west4-gcp
|
|||||||
# more details here: https://confluence.atlassian.com/enterprise/using-personal-access-tokens-1026032365.html
|
# more details here: https://confluence.atlassian.com/enterprise/using-personal-access-tokens-1026032365.html
|
||||||
# JIRA_API_TOKEN=your_jira_api_token_here
|
# JIRA_API_TOKEN=your_jira_api_token_here
|
||||||
# JIRA_USERNAME=your_jira_username_here
|
# JIRA_USERNAME=your_jira_username_here
|
||||||
# JIRA_INSTANCE_URL=your_jira_instance_url_here
|
# JIRA_INSTANCE_URL=your_jira_instance_url_here
|
||||||
|
|
||||||
|
|
||||||
|
# power bi
|
||||||
|
# sign in to azure in order to authenticate with DefaultAzureCredentials
|
||||||
|
# details here https://learn.microsoft.com/en-us/dotnet/api/azure.identity.defaultazurecredential?view=azure-dotnet
|
||||||
|
POWERBI_DATASET_ID=_powerbi_dataset_id_here
|
||||||
|
POWERBI_TABLE_NAME=_test_table_name_here
|
||||||
|
POWERBI_NUMROWS=_num_rows_in_your_test_table
|
47
tests/integration_tests/agent/test_powerbi_agent.py
Normal file
47
tests/integration_tests/agent/test_powerbi_agent.py
Normal file
@ -0,0 +1,47 @@
|
|||||||
|
import pytest
|
||||||
|
|
||||||
|
from langchain.agents.agent_toolkits import PowerBIToolkit, create_pbi_agent
|
||||||
|
from langchain.chat_models import ChatOpenAI
|
||||||
|
from langchain.utilities.powerbi import PowerBIDataset
|
||||||
|
from langchain.utils import get_from_env
|
||||||
|
|
||||||
|
|
||||||
|
def azure_installed() -> bool:
|
||||||
|
try:
|
||||||
|
from azure.core.credentials import TokenCredential # noqa: F401
|
||||||
|
from azure.identity import DefaultAzureCredential # noqa: F401
|
||||||
|
|
||||||
|
return True
|
||||||
|
except Exception as e:
|
||||||
|
print(f"azure not installed, skipping test {e}")
|
||||||
|
return False
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.skipif(not azure_installed(), reason="requires azure package")
|
||||||
|
def test_daxquery() -> None:
|
||||||
|
from azure.identity import DefaultAzureCredential
|
||||||
|
|
||||||
|
DATASET_ID = get_from_env("", "POWERBI_DATASET_ID")
|
||||||
|
TABLE_NAME = get_from_env("", "POWERBI_TABLE_NAME")
|
||||||
|
NUM_ROWS = get_from_env("", "POWERBI_NUMROWS")
|
||||||
|
|
||||||
|
fast_llm = ChatOpenAI(
|
||||||
|
temperature=0.5, max_tokens=1000, model_name="gpt-3.5-turbo", verbose=True
|
||||||
|
)
|
||||||
|
smart_llm = ChatOpenAI(
|
||||||
|
temperature=0, max_tokens=100, model_name="gpt-4", verbose=True
|
||||||
|
)
|
||||||
|
|
||||||
|
toolkit = PowerBIToolkit(
|
||||||
|
powerbi=PowerBIDataset(
|
||||||
|
dataset_id=DATASET_ID,
|
||||||
|
table_names=[TABLE_NAME],
|
||||||
|
credential=DefaultAzureCredential(),
|
||||||
|
),
|
||||||
|
llm=smart_llm,
|
||||||
|
)
|
||||||
|
|
||||||
|
agent_executor = create_pbi_agent(llm=fast_llm, toolkit=toolkit, verbose=True)
|
||||||
|
|
||||||
|
output = agent_executor.run(f"How many rows are in the table, {TABLE_NAME}")
|
||||||
|
assert NUM_ROWS in output
|
36
tests/integration_tests/utilities/test_powerbi_api.py
Normal file
36
tests/integration_tests/utilities/test_powerbi_api.py
Normal file
@ -0,0 +1,36 @@
|
|||||||
|
"""Integration test for POWERBI API Wrapper."""
|
||||||
|
import pytest
|
||||||
|
|
||||||
|
from langchain.utilities.powerbi import PowerBIDataset
|
||||||
|
from langchain.utils import get_from_env
|
||||||
|
|
||||||
|
|
||||||
|
def azure_installed() -> bool:
|
||||||
|
try:
|
||||||
|
from azure.core.credentials import TokenCredential # noqa: F401
|
||||||
|
from azure.identity import DefaultAzureCredential # noqa: F401
|
||||||
|
|
||||||
|
return True
|
||||||
|
except Exception as e:
|
||||||
|
print(f"azure not installed, skipping test {e}")
|
||||||
|
return False
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.skipif(not azure_installed(), reason="requires azure package")
|
||||||
|
def test_daxquery() -> None:
|
||||||
|
from azure.identity import DefaultAzureCredential
|
||||||
|
|
||||||
|
DATASET_ID = get_from_env("", "POWERBI_DATASET_ID")
|
||||||
|
TABLE_NAME = get_from_env("", "POWERBI_TABLE_NAME")
|
||||||
|
NUM_ROWS = get_from_env("", "POWERBI_NUMROWS")
|
||||||
|
|
||||||
|
powerbi = PowerBIDataset(
|
||||||
|
dataset_id=DATASET_ID,
|
||||||
|
table_names=[TABLE_NAME],
|
||||||
|
credential=DefaultAzureCredential(),
|
||||||
|
)
|
||||||
|
|
||||||
|
output = powerbi.run(f'EVALUATE ROW("RowCount", COUNTROWS({TABLE_NAME}))')
|
||||||
|
numrows = str(output["results"][0]["tables"][0]["rows"][0]["[RowCount]"])
|
||||||
|
|
||||||
|
assert NUM_ROWS == numrows
|
0
tests/unit_tests/tools/powerbi/__init__.py
Normal file
0
tests/unit_tests/tools/powerbi/__init__.py
Normal file
10
tests/unit_tests/tools/powerbi/test_powerbi.py
Normal file
10
tests/unit_tests/tools/powerbi/test_powerbi.py
Normal file
@ -0,0 +1,10 @@
|
|||||||
|
def test_power_bi_can_be_imported() -> None:
|
||||||
|
"""Test that powerbi tools can be imported.
|
||||||
|
|
||||||
|
The goal of this test is to verify that langchain users will not get import errors
|
||||||
|
when loading powerbi related code if they don't have optional dependencies
|
||||||
|
installed.
|
||||||
|
"""
|
||||||
|
from langchain.tools.powerbi.tool import QueryPowerBITool # noqa
|
||||||
|
from langchain.agents.agent_toolkits import PowerBIToolkit, create_pbi_agent # noqa
|
||||||
|
from langchain.utilities.powerbi import PowerBIDataset # noqa
|
Loading…
Reference in New Issue
Block a user