mirror of
https://github.com/hwchase17/langchain.git
synced 2025-08-02 01:23:07 +00:00
docs: platform pages update (#14637)
Updated examples and platform pages. - added missed tools - added links and descriptions
This commit is contained in:
parent
ea99612caa
commit
0d6471c16d
@ -280,6 +280,26 @@ documents = docai_wh_retriever.get_relevant_documents(
|
||||
|
||||
## Tools
|
||||
|
||||
### Google Cloud Text-to-Speech
|
||||
|
||||
>[Google Cloud Text-to-Speech](https://cloud.google.com/text-to-speech) enables developers to
|
||||
> synthesize natural-sounding speech with 100+ voices, available in multiple languages and variants.
|
||||
> It applies DeepMind’s groundbreaking research in WaveNet and Google’s powerful neural networks
|
||||
> to deliver the highest fidelity possible.
|
||||
|
||||
We need to install a python package.
|
||||
|
||||
```bash
|
||||
pip install google-cloud-text-to-speech
|
||||
```
|
||||
|
||||
See a [usage example and authorization instructions](/docs/integrations/tools/google_cloud_texttospeech).
|
||||
|
||||
```python
|
||||
from langchain.tools import GoogleCloudTextToSpeechTool
|
||||
```
|
||||
|
||||
|
||||
### Google Drive
|
||||
|
||||
We need to install several python packages.
|
||||
@ -397,6 +417,7 @@ from langchain.tools.google_trends import GoogleTrendsQueryRun
|
||||
from langchain.utilities.google_trends import GoogleTrendsAPIWrapper
|
||||
```
|
||||
|
||||
|
||||
## Document Transformers
|
||||
|
||||
### Google Document AI
|
||||
|
@ -222,6 +222,9 @@ from langchain.retrievers import AzureCognitiveSearchRetriever
|
||||
|
||||
### Bing Search API
|
||||
|
||||
>[Microsoft Bing](https://www.bing.com/), commonly referred to as `Bing` or `Bing Search`,
|
||||
> is a web search engine owned and operated by `Microsoft`.
|
||||
|
||||
See a [usage example](/docs/integrations/tools/bing_search).
|
||||
|
||||
```python
|
||||
|
@ -106,3 +106,18 @@ See a [usage example](/docs/integrations/adapters/openai).
|
||||
```python
|
||||
from langchain.adapters import openai as lc_openai
|
||||
```
|
||||
|
||||
## Tools
|
||||
|
||||
### Dall-E Image Generator
|
||||
|
||||
>[OpenAI Dall-E](https://openai.com/dall-e-3) are text-to-image models developed by `OpenAI`
|
||||
> using deep learning methodologies to generate digital images from natural language descriptions,
|
||||
> called "prompts".
|
||||
|
||||
|
||||
See a [usage example](/docs/integrations/tools/dalle_image_generator).
|
||||
|
||||
```python
|
||||
from langchain.utilities.dalle_image_generator import DallEAPIWrapper
|
||||
```
|
||||
|
@ -4,7 +4,9 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Bing Search"
|
||||
"# Bing Search\n",
|
||||
"\n",
|
||||
">[Microsoft Bing](https://www.bing.com/), commonly referred to as `Bing` or `Bing Search`, is a web search engine owned and operated by `Microsoft`."
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -180,7 +182,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.9"
|
||||
"version": "3.10.12"
|
||||
},
|
||||
"vscode": {
|
||||
"interpreter": {
|
||||
@ -189,5 +191,5 @@
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
|
@ -7,7 +7,9 @@
|
||||
"source": [
|
||||
"# Dall-E Image Generator\n",
|
||||
"\n",
|
||||
"This notebook shows how you can generate images from a prompt synthesized using an OpenAI LLM. The images are generated using Dall-E, which uses the same OpenAI API key as the LLM."
|
||||
">[OpenAI Dall-E](https://openai.com/dall-e-3) are text-to-image models developed by `OpenAI` using deep learning methodologies to generate digital images from natural language descriptions, called \"prompts\".\n",
|
||||
"\n",
|
||||
"This notebook shows how you can generate images from a prompt synthesized using an OpenAI LLM. The images are generated using `Dall-E`, which uses the same OpenAI API key as the LLM."
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -169,9 +171,9 @@
|
||||
"provenance": []
|
||||
},
|
||||
"kernelspec": {
|
||||
"display_name": "poetry-venv",
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "poetry-venv"
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
@ -183,7 +185,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.1"
|
||||
"version": "3.10.12"
|
||||
},
|
||||
"vscode": {
|
||||
"interpreter": {
|
||||
|
@ -7,6 +7,8 @@
|
||||
"source": [
|
||||
"# Google Cloud Text-to-Speech\n",
|
||||
"\n",
|
||||
">[Google Cloud Text-to-Speech](https://cloud.google.com/text-to-speech) enables developers to synthesize natural-sounding speech with 100+ voices, available in multiple languages and variants. It applies DeepMind’s groundbreaking research in WaveNet and Google’s powerful neural networks to deliver the highest fidelity possible.\n",
|
||||
"\n",
|
||||
"This notebook shows how to interact with the `Google Cloud Text-to-Speech API` to achieve speech synthesis capabilities."
|
||||
]
|
||||
},
|
||||
@ -86,7 +88,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.0"
|
||||
"version": "3.10.12"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
Loading…
Reference in New Issue
Block a user