mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-23 23:29:21 +00:00
agent refactors (#997)
This commit is contained in:
parent
7fb33fca47
commit
0f0e69adce
@ -375,6 +375,59 @@ class AgentExecutor(Chain, BaseModel):
|
||||
final_output["intermediate_steps"] = intermediate_steps
|
||||
return final_output
|
||||
|
||||
def _take_next_step(
|
||||
self,
|
||||
name_to_tool_map: Dict[str, Tool],
|
||||
color_mapping: Dict[str, str],
|
||||
inputs: Dict[str, str],
|
||||
intermediate_steps: List[Tuple[AgentAction, str]],
|
||||
) -> Union[AgentFinish, Tuple[AgentAction, str]]:
|
||||
"""Take a single step in the thought-action-observation loop.
|
||||
|
||||
Override this to take control of how the agent makes and acts on choices.
|
||||
"""
|
||||
# Call the LLM to see what to do.
|
||||
output = self.agent.plan(intermediate_steps, **inputs)
|
||||
# If the tool chosen is the finishing tool, then we end and return.
|
||||
if isinstance(output, AgentFinish):
|
||||
return output
|
||||
# Otherwise we lookup the tool
|
||||
if output.tool in name_to_tool_map:
|
||||
tool = name_to_tool_map[output.tool]
|
||||
self.callback_manager.on_tool_start(
|
||||
{"name": str(tool.func)[:60] + "..."},
|
||||
output,
|
||||
color="green",
|
||||
verbose=self.verbose,
|
||||
)
|
||||
try:
|
||||
# We then call the tool on the tool input to get an observation
|
||||
observation = tool.func(output.tool_input)
|
||||
color = color_mapping[output.tool]
|
||||
return_direct = tool.return_direct
|
||||
except (KeyboardInterrupt, Exception) as e:
|
||||
self.callback_manager.on_tool_error(e, verbose=self.verbose)
|
||||
raise e
|
||||
else:
|
||||
self.callback_manager.on_tool_start(
|
||||
{"name": "N/A"}, output, color="green", verbose=self.verbose
|
||||
)
|
||||
observation = f"{output.tool} is not a valid tool, try another one."
|
||||
color = None
|
||||
return_direct = False
|
||||
llm_prefix = "" if return_direct else self.agent.llm_prefix
|
||||
self.callback_manager.on_tool_end(
|
||||
observation,
|
||||
color=color,
|
||||
observation_prefix=self.agent.observation_prefix,
|
||||
llm_prefix=llm_prefix,
|
||||
verbose=self.verbose,
|
||||
)
|
||||
if return_direct:
|
||||
# Set the log to "" because we do not want to log it.
|
||||
return AgentFinish({self.agent.return_values[0]: observation}, "")
|
||||
return output, observation
|
||||
|
||||
def _call(self, inputs: Dict[str, str]) -> Dict[str, Any]:
|
||||
"""Run text through and get agent response."""
|
||||
# Make sure that every tool is synchronous (not a coroutine)
|
||||
@ -398,49 +451,13 @@ class AgentExecutor(Chain, BaseModel):
|
||||
iterations = 0
|
||||
# We now enter the agent loop (until it returns something).
|
||||
while self._should_continue(iterations):
|
||||
# Call the LLM to see what to do.
|
||||
output = self.agent.plan(intermediate_steps, **inputs)
|
||||
# If the tool chosen is the finishing tool, then we end and return.
|
||||
if isinstance(output, AgentFinish):
|
||||
return self._return(output, intermediate_steps)
|
||||
|
||||
# Otherwise we lookup the tool
|
||||
if output.tool in name_to_tool_map:
|
||||
tool = name_to_tool_map[output.tool]
|
||||
self.callback_manager.on_tool_start(
|
||||
{"name": str(tool.func)[:60] + "..."},
|
||||
output,
|
||||
color="green",
|
||||
verbose=self.verbose,
|
||||
)
|
||||
try:
|
||||
# We then call the tool on the tool input to get an observation
|
||||
observation = tool.func(output.tool_input)
|
||||
color = color_mapping[output.tool]
|
||||
return_direct = tool.return_direct
|
||||
except (KeyboardInterrupt, Exception) as e:
|
||||
self.callback_manager.on_tool_error(e, verbose=self.verbose)
|
||||
raise e
|
||||
else:
|
||||
self.callback_manager.on_tool_start(
|
||||
{"name": "N/A"}, output, color="green", verbose=self.verbose
|
||||
)
|
||||
observation = f"{output.tool} is not a valid tool, try another one."
|
||||
color = None
|
||||
return_direct = False
|
||||
llm_prefix = "" if return_direct else self.agent.llm_prefix
|
||||
self.callback_manager.on_tool_end(
|
||||
observation,
|
||||
color=color,
|
||||
observation_prefix=self.agent.observation_prefix,
|
||||
llm_prefix=llm_prefix,
|
||||
verbose=self.verbose,
|
||||
next_step_output = self._take_next_step(
|
||||
name_to_tool_map, color_mapping, inputs, intermediate_steps
|
||||
)
|
||||
intermediate_steps.append((output, observation))
|
||||
if return_direct:
|
||||
# Set the log to "" because we do not want to log it.
|
||||
output = AgentFinish({self.agent.return_values[0]: observation}, "")
|
||||
return self._return(output, intermediate_steps)
|
||||
if isinstance(next_step_output, AgentFinish):
|
||||
return self._return(next_step_output, intermediate_steps)
|
||||
|
||||
intermediate_steps.append(next_step_output)
|
||||
iterations += 1
|
||||
output = self.agent.return_stopped_response(
|
||||
self.early_stopping_method, intermediate_steps, **inputs
|
||||
|
Loading…
Reference in New Issue
Block a user