mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-30 19:49:09 +00:00
HF Injection Identifier Refactor
This commit is contained in:
parent
2c656e457c
commit
0f81b3dd2f
@ -1,21 +1,28 @@
|
||||
"""Tool for the identification of prompt injection attacks."""
|
||||
from __future__ import annotations
|
||||
|
||||
from enum import Enum
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from langchain.pydantic_v1 import Field
|
||||
from langchain.tools.base import BaseTool
|
||||
from transformers import Pipeline, pipeline
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import Pipeline
|
||||
|
||||
|
||||
class PromptInjectionModelOutput(str, Enum):
|
||||
"""Output of the prompt injection model."""
|
||||
|
||||
LEGIT = "LEGIT"
|
||||
INJECTION = "INJECTION"
|
||||
def _model_default_factory() -> Pipeline:
|
||||
try:
|
||||
from transformers import pipeline
|
||||
except ImportError as e:
|
||||
raise ImportError(
|
||||
"Cannot import transformers, please install with "
|
||||
"`pip install transformers`."
|
||||
) from e
|
||||
return pipeline("text-classification", model="deepset/deberta-v3-base-injection")
|
||||
|
||||
|
||||
class HuggingFaceInjectionIdentifier(BaseTool):
|
||||
"""Tool that uses deberta-v3-base-injection model
|
||||
to identify prompt injection attacks."""
|
||||
"""Tool that uses deberta-v3-base-injection to detect prompt injection attacks."""
|
||||
|
||||
name: str = "hugging_face_injection_identifier"
|
||||
description: str = (
|
||||
@ -23,21 +30,12 @@ class HuggingFaceInjectionIdentifier(BaseTool):
|
||||
"Useful for when you need to ensure that prompt is free of injection attacks. "
|
||||
"Input should be any message from the user."
|
||||
)
|
||||
|
||||
model: Pipeline = pipeline(
|
||||
"text-classification", model="deepset/deberta-v3-base-injection"
|
||||
)
|
||||
|
||||
def _classify_user_input(self, query: str) -> bool:
|
||||
result = self.model(query)
|
||||
result = sorted(result, key=lambda x: x["score"], reverse=True)
|
||||
if result[0]["label"] == PromptInjectionModelOutput.INJECTION:
|
||||
return False
|
||||
return True
|
||||
model: Pipeline = Field(default_factory=_model_default_factory)
|
||||
|
||||
def _run(self, query: str) -> str:
|
||||
"""Use the tool."""
|
||||
is_query_safe = self._classify_user_input(query)
|
||||
if not is_query_safe:
|
||||
result = self.model(query)
|
||||
result = sorted(result, key=lambda x: x["score"], reverse=True)
|
||||
if result[0]["label"] == "INJECTION":
|
||||
raise ValueError("Prompt injection attack detected")
|
||||
return query
|
||||
|
Loading…
Reference in New Issue
Block a user