mirror of
https://github.com/hwchase17/langchain.git
synced 2025-07-31 08:32:32 +00:00
community[patch]: support momento vector index filter expressions (#14978)
**Description** For the Momento Vector Index (MVI) vector store implementation, pass through `filter_expression` kwarg to the MVI client, if specified. This change will enable the MVI self query implementation in a future PR. Also fixes some integration tests.
This commit is contained in:
parent
300c1cbf92
commit
1c934fff0e
@ -306,8 +306,13 @@ class MomentoVectorIndex(VectorStore):
|
||||
|
||||
if "top_k" in kwargs:
|
||||
k = kwargs["k"]
|
||||
filter_expression = kwargs.get("filter_expression", None)
|
||||
response = self._client.search(
|
||||
self.index_name, embedding, top_k=k, metadata_fields=ALL_METADATA
|
||||
self.index_name,
|
||||
embedding,
|
||||
top_k=k,
|
||||
metadata_fields=ALL_METADATA,
|
||||
filter_expression=filter_expression,
|
||||
)
|
||||
|
||||
if not isinstance(response, Search.Success):
|
||||
@ -366,8 +371,13 @@ class MomentoVectorIndex(VectorStore):
|
||||
from momento.requests.vector_index import ALL_METADATA
|
||||
from momento.responses.vector_index import SearchAndFetchVectors
|
||||
|
||||
filter_expression = kwargs.get("filter_expression", None)
|
||||
response = self._client.search_and_fetch_vectors(
|
||||
self.index_name, embedding, top_k=fetch_k, metadata_fields=ALL_METADATA
|
||||
self.index_name,
|
||||
embedding,
|
||||
top_k=fetch_k,
|
||||
metadata_fields=ALL_METADATA,
|
||||
filter_expression=filter_expression,
|
||||
)
|
||||
|
||||
if isinstance(response, SearchAndFetchVectors.Success):
|
||||
|
@ -1,10 +1,12 @@
|
||||
import os
|
||||
import time
|
||||
import uuid
|
||||
from typing import Iterator, List
|
||||
from typing import Generator, Iterator, List
|
||||
|
||||
import pytest
|
||||
from langchain_core.documents import Document
|
||||
|
||||
from langchain_community.document_loaders import TextLoader
|
||||
from langchain_community.embeddings import OpenAIEmbeddings
|
||||
from langchain_community.vectorstores import MomentoVectorIndex
|
||||
|
||||
@ -24,6 +26,23 @@ def wait() -> None:
|
||||
time.sleep(1)
|
||||
|
||||
|
||||
@pytest.fixture(scope="module")
|
||||
def embedding_openai() -> OpenAIEmbeddings:
|
||||
if not os.environ.get("OPENAI_API_KEY"):
|
||||
raise ValueError("OPENAI_API_KEY is not set")
|
||||
return OpenAIEmbeddings()
|
||||
|
||||
|
||||
@pytest.fixture(scope="function")
|
||||
def texts() -> Generator[List[str], None, None]:
|
||||
# Load the documents from a file located in the fixtures directory
|
||||
documents = TextLoader(
|
||||
os.path.join(os.path.dirname(__file__), "fixtures", "sharks.txt")
|
||||
).load()
|
||||
|
||||
yield [doc.page_content for doc in documents]
|
||||
|
||||
|
||||
@pytest.fixture(scope="function")
|
||||
def vector_store(
|
||||
embedding_openai: OpenAIEmbeddings, random_index_name: str
|
||||
|
Loading…
Reference in New Issue
Block a user