mirror of
https://github.com/hwchase17/langchain.git
synced 2025-08-07 12:06:43 +00:00
docs: add tensorlake provider (#32046)
This commit is contained in:
parent
5da986c3f6
commit
22535eb4b3
96
docs/docs/integrations/providers/tensorlake.mdx
Normal file
96
docs/docs/integrations/providers/tensorlake.mdx
Normal file
@ -0,0 +1,96 @@
|
|||||||
|
# Tensorlake
|
||||||
|
|
||||||
|
Tensorlake is the AI Data Cloud that reliably transforms data from unstructured sources into ingestion-ready formats for AI Applications.
|
||||||
|
|
||||||
|
The `langchain-tensorlake` package provides seamless integration between [Tensorlake](https://tensorlake.ai) and [LangChain](https://langchain.com),
|
||||||
|
enabling you to build sophisticated document processing agents with enhanced parsing features, like signature detection.
|
||||||
|
|
||||||
|
## Tensorlake feature overview
|
||||||
|
|
||||||
|
Tensorlake gives you tools to:
|
||||||
|
- Extract: Schema-driven structured data extraction to pull out specific fields from documents.
|
||||||
|
- Parse: Convert documents to markdown to build RAG/Knowledge Graph systems.
|
||||||
|
- Orchestrate: Build programmable workflows for large-scale ingestion and enrichment of Documents, Text, Audio, Video and more.
|
||||||
|
|
||||||
|
Learn more at [docs.tensorlake.ai](https://docs.tensorlake.ai/introduction)
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
## Installation
|
||||||
|
|
||||||
|
```bash
|
||||||
|
pip install -U langchain-tensorlake
|
||||||
|
```
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
## Examples
|
||||||
|
|
||||||
|
Follow a [full tutorial](https://docs.tensorlake.ai/examples/tutorials/real-estate-agent-with-langgraph-cli) on how to detect signatures in unstructured documents using the `langchain-tensorlake` tool.
|
||||||
|
|
||||||
|
Or check out this [colab notebook](https://colab.research.google.com/drive/1VRWIPCWYnjcRtQL864Bqm9CJ6g4EpRqs?usp=sharing) for a quick start.
|
||||||
|
|
||||||
|
---
|
||||||
|
## Quick Start
|
||||||
|
|
||||||
|
### 1. Set up your environment
|
||||||
|
|
||||||
|
You should configure credentials for Tensorlake and OpenAI by setting the following environment variables:
|
||||||
|
```
|
||||||
|
export TENSORLAKE_API_KEY="your-tensorlake-api-key"
|
||||||
|
export OPENAI_API_KEY = "your-openai-api-key"
|
||||||
|
```
|
||||||
|
|
||||||
|
Get your Tensorlake API key from the [Tensorlake Cloud Console](https://cloud.tensorlake.ai/). New users get 100 free credits.
|
||||||
|
|
||||||
|
### 2. Import necessary packages
|
||||||
|
|
||||||
|
```python
|
||||||
|
from langchain_tensorlake import document_markdown_tool
|
||||||
|
from langgraph.prebuilt import create_react_agent
|
||||||
|
import asyncio
|
||||||
|
import os
|
||||||
|
```
|
||||||
|
|
||||||
|
### 3. Build a Signature Detection Agent
|
||||||
|
|
||||||
|
```python
|
||||||
|
async def main(question):
|
||||||
|
# Create the agent with the Tensorlake tool
|
||||||
|
agent = create_react_agent(
|
||||||
|
model="openai:gpt-4o-mini",
|
||||||
|
tools=[document_markdown_tool],
|
||||||
|
prompt=(
|
||||||
|
"""
|
||||||
|
I have a document that needs to be parsed. \n\nPlease parse this document and answer the question about it.
|
||||||
|
"""
|
||||||
|
),
|
||||||
|
name="real-estate-agent",
|
||||||
|
)
|
||||||
|
|
||||||
|
# Run the agent
|
||||||
|
result = await agent.ainvoke({"messages": [{"role": "user", "content": question}]})
|
||||||
|
|
||||||
|
# Print the result
|
||||||
|
print(result["messages"][-1].content)
|
||||||
|
```
|
||||||
|
|
||||||
|
*Note:* We highly recommend using `openai` as the agent model to ensure the agent sets the right parsing parameters
|
||||||
|
|
||||||
|
### 4. Example Usage
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Define the path to the document to be parsed
|
||||||
|
path = "path/to/your/document.pdf"
|
||||||
|
|
||||||
|
# Define the question to be asked and create the agent
|
||||||
|
question = f"What contextual information can you extract about the signatures in my document found at {path}?"
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
asyncio.run(main(question))
|
||||||
|
```
|
||||||
|
|
||||||
|
## Need help?
|
||||||
|
|
||||||
|
Reach out to us on [Slack](https://join.slack.com/t/tensorlakecloud/shared_invite/zt-32fq4nmib-gO0OM5RIar3zLOBm~ZGqKg) or on the
|
||||||
|
[package repository on GitHub](https://github.com/tensorlakeai/langchain-tensorlake) directly.
|
@ -693,3 +693,6 @@ packages:
|
|||||||
- name: langchain-greennode
|
- name: langchain-greennode
|
||||||
path: libs/greennode
|
path: libs/greennode
|
||||||
repo: greennode-ai/langchain-greennode
|
repo: greennode-ai/langchain-greennode
|
||||||
|
- name: langchain-tensorlake
|
||||||
|
path: .
|
||||||
|
repo: tensorlakeai/langchain-tensorlake
|
||||||
|
Loading…
Reference in New Issue
Block a user