mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-24 15:43:54 +00:00
community[patch]: Support Streaming in Azure Machine Learning (#18246)
- [x] **PR title**: "community: Support streaming in Azure ML and few naming changes" - [x] **PR message**: - **Description:** Added support for streaming for azureml_endpoint. Also, renamed and AzureMLEndpointApiType.realtime to AzureMLEndpointApiType.dedicated. Also, added new classes CustomOpenAIChatContentFormatter and CustomOpenAIContentFormatter and updated the classes LlamaChatContentFormatter and LlamaContentFormatter to now show a deprecated warning message when instantiated. --------- Co-authored-by: Sachin Paryani <saparan@microsoft.com> Co-authored-by: Bagatur <baskaryan@gmail.com>
This commit is contained in:
parent
ecb11a4a32
commit
25c9f3d1d1
@ -40,7 +40,7 @@
|
||||
"You must [deploy a model on Azure ML](https://learn.microsoft.com/en-us/azure/machine-learning/how-to-use-foundation-models?view=azureml-api-2#deploying-foundation-models-to-endpoints-for-inferencing) or [to Azure AI studio](https://learn.microsoft.com/en-us/azure/ai-studio/how-to/deploy-models-open) and obtain the following parameters:\n",
|
||||
"\n",
|
||||
"* `endpoint_url`: The REST endpoint url provided by the endpoint.\n",
|
||||
"* `endpoint_api_type`: Use `endpoint_type='realtime'` when deploying models to **Realtime endpoints** (hosted managed infrastructure). Use `endpoint_type='serverless'` when deploying models using the **Pay-as-you-go** offering (model as a service).\n",
|
||||
"* `endpoint_api_type`: Use `endpoint_type='dedicated'` when deploying models to **Dedicated endpoints** (hosted managed infrastructure). Use `endpoint_type='serverless'` when deploying models using the **Pay-as-you-go** offering (model as a service).\n",
|
||||
"* `endpoint_api_key`: The API key provided by the endpoint"
|
||||
]
|
||||
},
|
||||
@ -52,9 +52,9 @@
|
||||
"\n",
|
||||
"The `content_formatter` parameter is a handler class for transforming the request and response of an AzureML endpoint to match with required schema. Since there are a wide range of models in the model catalog, each of which may process data differently from one another, a `ContentFormatterBase` class is provided to allow users to transform data to their liking. The following content formatters are provided:\n",
|
||||
"\n",
|
||||
"* `LLamaChatContentFormatter`: Formats request and response data for LLaMa2-chat\n",
|
||||
"* `CustomOpenAIChatContentFormatter`: Formats request and response data for models like LLaMa2-chat that follow the OpenAI API spec for request and response.\n",
|
||||
"\n",
|
||||
"*Note: `langchain.chat_models.azureml_endpoint.LLamaContentFormatter` is being deprecated and replaced with `langchain.chat_models.azureml_endpoint.LLamaChatContentFormatter`.*\n",
|
||||
"*Note: `langchain.chat_models.azureml_endpoint.LlamaChatContentFormatter` is being deprecated and replaced with `langchain.chat_models.azureml_endpoint.CustomOpenAIChatContentFormatter`.*\n",
|
||||
"\n",
|
||||
"You can implement custom content formatters specific for your model deriving from the class `langchain_community.llms.azureml_endpoint.ContentFormatterBase`."
|
||||
]
|
||||
@ -65,20 +65,7 @@
|
||||
"source": [
|
||||
"## Examples\n",
|
||||
"\n",
|
||||
"The following section cotain examples about how to use this class:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.chat_models.azureml_endpoint import (\n",
|
||||
" AzureMLEndpointApiType,\n",
|
||||
" LlamaChatContentFormatter,\n",
|
||||
")\n",
|
||||
"from langchain_core.messages import HumanMessage"
|
||||
"The following section contains examples about how to use this class:"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -105,14 +92,17 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_community.chat_models.azureml_endpoint import LlamaContentFormatter\n",
|
||||
"from langchain_community.chat_models.azureml_endpoint import (\n",
|
||||
" AzureMLEndpointApiType,\n",
|
||||
" CustomOpenAIChatContentFormatter,\n",
|
||||
")\n",
|
||||
"from langchain_core.messages import HumanMessage\n",
|
||||
"\n",
|
||||
"chat = AzureMLChatOnlineEndpoint(\n",
|
||||
" endpoint_url=\"https://<your-endpoint>.<your_region>.inference.ml.azure.com/score\",\n",
|
||||
" endpoint_api_type=AzureMLEndpointApiType.realtime,\n",
|
||||
" endpoint_api_type=AzureMLEndpointApiType.dedicated,\n",
|
||||
" endpoint_api_key=\"my-api-key\",\n",
|
||||
" content_formatter=LlamaChatContentFormatter(),\n",
|
||||
" content_formatter=CustomOpenAIChatContentFormatter(),\n",
|
||||
")\n",
|
||||
"response = chat.invoke(\n",
|
||||
" [HumanMessage(content=\"Will the Collatz conjecture ever be solved?\")]\n",
|
||||
@ -137,7 +127,7 @@
|
||||
" endpoint_url=\"https://<your-endpoint>.<your_region>.inference.ml.azure.com/v1/chat/completions\",\n",
|
||||
" endpoint_api_type=AzureMLEndpointApiType.serverless,\n",
|
||||
" endpoint_api_key=\"my-api-key\",\n",
|
||||
" content_formatter=LlamaChatContentFormatter,\n",
|
||||
" content_formatter=CustomOpenAIChatContentFormatter,\n",
|
||||
")\n",
|
||||
"response = chat.invoke(\n",
|
||||
" [HumanMessage(content=\"Will the Collatz conjecture ever be solved?\")]\n",
|
||||
@ -149,7 +139,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"If you need to pass additional parameters to the model, use `model_kwards` argument:"
|
||||
"If you need to pass additional parameters to the model, use `model_kwargs` argument:"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -162,7 +152,7 @@
|
||||
" endpoint_url=\"https://<your-endpoint>.<your_region>.inference.ml.azure.com/v1/chat/completions\",\n",
|
||||
" endpoint_api_type=AzureMLEndpointApiType.serverless,\n",
|
||||
" endpoint_api_key=\"my-api-key\",\n",
|
||||
" content_formatter=LlamaChatContentFormatter,\n",
|
||||
" content_formatter=CustomOpenAIChatContentFormatter,\n",
|
||||
" model_kwargs={\"temperature\": 0.8},\n",
|
||||
")"
|
||||
]
|
||||
@ -204,7 +194,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.12"
|
||||
"version": "3.9.1"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
@ -29,7 +29,7 @@
|
||||
"You must [deploy a model on Azure ML](https://learn.microsoft.com/en-us/azure/machine-learning/how-to-use-foundation-models?view=azureml-api-2#deploying-foundation-models-to-endpoints-for-inferencing) or [to Azure AI studio](https://learn.microsoft.com/en-us/azure/ai-studio/how-to/deploy-models-open) and obtain the following parameters:\n",
|
||||
"\n",
|
||||
"* `endpoint_url`: The REST endpoint url provided by the endpoint.\n",
|
||||
"* `endpoint_api_type`: Use `endpoint_type='realtime'` when deploying models to **Realtime endpoints** (hosted managed infrastructure). Use `endpoint_type='serverless'` when deploying models using the **Pay-as-you-go** offering (model as a service).\n",
|
||||
"* `endpoint_api_type`: Use `endpoint_type='dedicated'` when deploying models to **Dedicated endpoints** (hosted managed infrastructure). Use `endpoint_type='serverless'` when deploying models using the **Pay-as-you-go** offering (model as a service).\n",
|
||||
"* `endpoint_api_key`: The API key provided by the endpoint.\n",
|
||||
"* `deployment_name`: (Optional) The deployment name of the model using the endpoint."
|
||||
]
|
||||
@ -45,7 +45,7 @@
|
||||
"* `GPT2ContentFormatter`: Formats request and response data for GPT2\n",
|
||||
"* `DollyContentFormatter`: Formats request and response data for the Dolly-v2\n",
|
||||
"* `HFContentFormatter`: Formats request and response data for text-generation Hugging Face models\n",
|
||||
"* `LLamaContentFormatter`: Formats request and response data for LLaMa2\n",
|
||||
"* `CustomOpenAIContentFormatter`: Formats request and response data for models like LLaMa2 that follow OpenAI API compatible scheme.\n",
|
||||
"\n",
|
||||
"*Note: `OSSContentFormatter` is being deprecated and replaced with `GPT2ContentFormatter`. The logic is the same but `GPT2ContentFormatter` is a more suitable name. You can still continue to use `OSSContentFormatter` as the changes are backwards compatible.*"
|
||||
]
|
||||
@ -72,15 +72,15 @@
|
||||
"source": [
|
||||
"from langchain_community.llms.azureml_endpoint import (\n",
|
||||
" AzureMLEndpointApiType,\n",
|
||||
" LlamaContentFormatter,\n",
|
||||
" CustomOpenAIContentFormatter,\n",
|
||||
")\n",
|
||||
"from langchain_core.messages import HumanMessage\n",
|
||||
"\n",
|
||||
"llm = AzureMLOnlineEndpoint(\n",
|
||||
" endpoint_url=\"https://<your-endpoint>.<your_region>.inference.ml.azure.com/score\",\n",
|
||||
" endpoint_api_type=AzureMLEndpointApiType.realtime,\n",
|
||||
" endpoint_api_type=AzureMLEndpointApiType.dedicated,\n",
|
||||
" endpoint_api_key=\"my-api-key\",\n",
|
||||
" content_formatter=LlamaContentFormatter(),\n",
|
||||
" content_formatter=CustomOpenAIContentFormatter(),\n",
|
||||
" model_kwargs={\"temperature\": 0.8, \"max_new_tokens\": 400},\n",
|
||||
")\n",
|
||||
"response = llm.invoke(\"Write me a song about sparkling water:\")\n",
|
||||
@ -119,7 +119,7 @@
|
||||
"source": [
|
||||
"from langchain_community.llms.azureml_endpoint import (\n",
|
||||
" AzureMLEndpointApiType,\n",
|
||||
" LlamaContentFormatter,\n",
|
||||
" CustomOpenAIContentFormatter,\n",
|
||||
")\n",
|
||||
"from langchain_core.messages import HumanMessage\n",
|
||||
"\n",
|
||||
@ -127,7 +127,7 @@
|
||||
" endpoint_url=\"https://<your-endpoint>.<your_region>.inference.ml.azure.com/v1/completions\",\n",
|
||||
" endpoint_api_type=AzureMLEndpointApiType.serverless,\n",
|
||||
" endpoint_api_key=\"my-api-key\",\n",
|
||||
" content_formatter=LlamaContentFormatter(),\n",
|
||||
" content_formatter=CustomOpenAIContentFormatter(),\n",
|
||||
" model_kwargs={\"temperature\": 0.8, \"max_new_tokens\": 400},\n",
|
||||
")\n",
|
||||
"response = llm.invoke(\"Write me a song about sparkling water:\")\n",
|
||||
@ -181,7 +181,7 @@
|
||||
"content_formatter = CustomFormatter()\n",
|
||||
"\n",
|
||||
"llm = AzureMLOnlineEndpoint(\n",
|
||||
" endpoint_api_type=\"realtime\",\n",
|
||||
" endpoint_api_type=\"dedicated\",\n",
|
||||
" endpoint_api_key=os.getenv(\"BART_ENDPOINT_API_KEY\"),\n",
|
||||
" endpoint_url=os.getenv(\"BART_ENDPOINT_URL\"),\n",
|
||||
" model_kwargs={\"temperature\": 0.8, \"max_new_tokens\": 400},\n",
|
||||
|
@ -1,16 +1,37 @@
|
||||
import json
|
||||
from typing import Any, Dict, List, Optional, cast
|
||||
import warnings
|
||||
from typing import (
|
||||
Any,
|
||||
AsyncIterator,
|
||||
Dict,
|
||||
Iterator,
|
||||
List,
|
||||
Mapping,
|
||||
Optional,
|
||||
Type,
|
||||
cast,
|
||||
)
|
||||
|
||||
from langchain_core.callbacks.manager import CallbackManagerForLLMRun
|
||||
from langchain_core.callbacks import (
|
||||
AsyncCallbackManagerForLLMRun,
|
||||
CallbackManagerForLLMRun,
|
||||
)
|
||||
from langchain_core.language_models.chat_models import BaseChatModel
|
||||
from langchain_core.messages import (
|
||||
AIMessage,
|
||||
AIMessageChunk,
|
||||
BaseMessage,
|
||||
BaseMessageChunk,
|
||||
ChatMessage,
|
||||
ChatMessageChunk,
|
||||
FunctionMessageChunk,
|
||||
HumanMessage,
|
||||
HumanMessageChunk,
|
||||
SystemMessage,
|
||||
SystemMessageChunk,
|
||||
ToolMessageChunk,
|
||||
)
|
||||
from langchain_core.outputs import ChatGeneration, ChatResult
|
||||
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
||||
|
||||
from langchain_community.llms.azureml_endpoint import (
|
||||
AzureMLBaseEndpoint,
|
||||
@ -25,12 +46,12 @@ class LlamaContentFormatter(ContentFormatterBase):
|
||||
def __init__(self) -> None:
|
||||
raise TypeError(
|
||||
"`LlamaContentFormatter` is deprecated for chat models. Use "
|
||||
"`LlamaChatContentFormatter` instead."
|
||||
"`CustomOpenAIContentFormatter` instead."
|
||||
)
|
||||
|
||||
|
||||
class LlamaChatContentFormatter(ContentFormatterBase):
|
||||
"""Content formatter for `LLaMA`."""
|
||||
class CustomOpenAIChatContentFormatter(ContentFormatterBase):
|
||||
"""Chat Content formatter for models with OpenAI like API scheme."""
|
||||
|
||||
SUPPORTED_ROLES: List[str] = ["user", "assistant", "system"]
|
||||
|
||||
@ -55,7 +76,7 @@ class LlamaChatContentFormatter(ContentFormatterBase):
|
||||
}
|
||||
elif (
|
||||
isinstance(message, ChatMessage)
|
||||
and message.role in LlamaChatContentFormatter.SUPPORTED_ROLES
|
||||
and message.role in CustomOpenAIChatContentFormatter.SUPPORTED_ROLES
|
||||
):
|
||||
return {
|
||||
"role": message.role,
|
||||
@ -63,7 +84,7 @@ class LlamaChatContentFormatter(ContentFormatterBase):
|
||||
}
|
||||
else:
|
||||
supported = ",".join(
|
||||
[role for role in LlamaChatContentFormatter.SUPPORTED_ROLES]
|
||||
[role for role in CustomOpenAIChatContentFormatter.SUPPORTED_ROLES]
|
||||
)
|
||||
raise ValueError(
|
||||
f"""Received unsupported role.
|
||||
@ -72,7 +93,7 @@ class LlamaChatContentFormatter(ContentFormatterBase):
|
||||
|
||||
@property
|
||||
def supported_api_types(self) -> List[AzureMLEndpointApiType]:
|
||||
return [AzureMLEndpointApiType.realtime, AzureMLEndpointApiType.serverless]
|
||||
return [AzureMLEndpointApiType.dedicated, AzureMLEndpointApiType.serverless]
|
||||
|
||||
def format_messages_request_payload(
|
||||
self,
|
||||
@ -82,10 +103,13 @@ class LlamaChatContentFormatter(ContentFormatterBase):
|
||||
) -> bytes:
|
||||
"""Formats the request according to the chosen api"""
|
||||
chat_messages = [
|
||||
LlamaChatContentFormatter._convert_message_to_dict(message)
|
||||
CustomOpenAIChatContentFormatter._convert_message_to_dict(message)
|
||||
for message in messages
|
||||
]
|
||||
if api_type == AzureMLEndpointApiType.realtime:
|
||||
if api_type in [
|
||||
AzureMLEndpointApiType.dedicated,
|
||||
AzureMLEndpointApiType.realtime,
|
||||
]:
|
||||
request_payload = json.dumps(
|
||||
{
|
||||
"input_data": {
|
||||
@ -105,10 +129,13 @@ class LlamaChatContentFormatter(ContentFormatterBase):
|
||||
def format_response_payload(
|
||||
self,
|
||||
output: bytes,
|
||||
api_type: AzureMLEndpointApiType = AzureMLEndpointApiType.realtime,
|
||||
api_type: AzureMLEndpointApiType = AzureMLEndpointApiType.dedicated,
|
||||
) -> ChatGeneration:
|
||||
"""Formats response"""
|
||||
if api_type == AzureMLEndpointApiType.realtime:
|
||||
if api_type in [
|
||||
AzureMLEndpointApiType.dedicated,
|
||||
AzureMLEndpointApiType.realtime,
|
||||
]:
|
||||
try:
|
||||
choice = json.loads(output)["output"]
|
||||
except (KeyError, IndexError, TypeError) as e:
|
||||
@ -143,6 +170,20 @@ class LlamaChatContentFormatter(ContentFormatterBase):
|
||||
raise ValueError(f"`api_type` {api_type} is not supported by this formatter")
|
||||
|
||||
|
||||
class LlamaChatContentFormatter(CustomOpenAIChatContentFormatter):
|
||||
"""Deprecated: Kept for backwards compatibility
|
||||
|
||||
Chat Content formatter for Llama."""
|
||||
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
warnings.warn(
|
||||
"""`LlamaChatContentFormatter` will be deprecated in the future.
|
||||
Please use `CustomOpenAIChatContentFormatter` instead.
|
||||
"""
|
||||
)
|
||||
|
||||
|
||||
class MistralChatContentFormatter(LlamaChatContentFormatter):
|
||||
"""Content formatter for `Mistral`."""
|
||||
|
||||
@ -187,8 +228,8 @@ class AzureMLChatOnlineEndpoint(BaseChatModel, AzureMLBaseEndpoint):
|
||||
Example:
|
||||
.. code-block:: python
|
||||
azure_llm = AzureMLOnlineEndpoint(
|
||||
endpoint_url="https://<your-endpoint>.<your_region>.inference.ml.azure.com/score",
|
||||
endpoint_api_type=AzureMLApiType.realtime,
|
||||
endpoint_url="https://<your-endpoint>.<your_region>.inference.ml.azure.com/v1/chat/completions",
|
||||
endpoint_api_type=AzureMLApiType.serverless,
|
||||
endpoint_api_key="my-api-key",
|
||||
content_formatter=chat_content_formatter,
|
||||
)
|
||||
@ -239,3 +280,143 @@ class AzureMLChatOnlineEndpoint(BaseChatModel, AzureMLBaseEndpoint):
|
||||
response_payload, self.endpoint_api_type
|
||||
)
|
||||
return ChatResult(generations=[generations])
|
||||
|
||||
def _stream(
|
||||
self,
|
||||
messages: List[BaseMessage],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> Iterator[ChatGenerationChunk]:
|
||||
self.endpoint_url = self.endpoint_url.replace("/chat/completions", "")
|
||||
timeout = None if "timeout" not in kwargs else kwargs["timeout"]
|
||||
|
||||
import openai
|
||||
|
||||
params = {}
|
||||
client_params = {
|
||||
"api_key": self.endpoint_api_key.get_secret_value(),
|
||||
"base_url": self.endpoint_url,
|
||||
"timeout": timeout,
|
||||
"default_headers": None,
|
||||
"default_query": None,
|
||||
"http_client": None,
|
||||
}
|
||||
|
||||
client = openai.OpenAI(**client_params)
|
||||
message_dicts = [
|
||||
CustomOpenAIChatContentFormatter._convert_message_to_dict(m)
|
||||
for m in messages
|
||||
]
|
||||
params = {"stream": True, "stop": stop, "model": None, **kwargs}
|
||||
|
||||
default_chunk_class = AIMessageChunk
|
||||
for chunk in client.chat.completions.create(messages=message_dicts, **params):
|
||||
if not isinstance(chunk, dict):
|
||||
chunk = chunk.dict()
|
||||
if len(chunk["choices"]) == 0:
|
||||
continue
|
||||
choice = chunk["choices"][0]
|
||||
chunk = _convert_delta_to_message_chunk(
|
||||
choice["delta"], default_chunk_class
|
||||
)
|
||||
generation_info = {}
|
||||
if finish_reason := choice.get("finish_reason"):
|
||||
generation_info["finish_reason"] = finish_reason
|
||||
logprobs = choice.get("logprobs")
|
||||
if logprobs:
|
||||
generation_info["logprobs"] = logprobs
|
||||
default_chunk_class = chunk.__class__
|
||||
chunk = ChatGenerationChunk(
|
||||
message=chunk, generation_info=generation_info or None
|
||||
)
|
||||
if run_manager:
|
||||
run_manager.on_llm_new_token(chunk.text, chunk=chunk, logprobs=logprobs)
|
||||
yield chunk
|
||||
|
||||
async def _astream(
|
||||
self,
|
||||
messages: List[BaseMessage],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> AsyncIterator[ChatGenerationChunk]:
|
||||
self.endpoint_url = self.endpoint_url.replace("/chat/completions", "")
|
||||
timeout = None if "timeout" not in kwargs else kwargs["timeout"]
|
||||
|
||||
import openai
|
||||
|
||||
params = {}
|
||||
client_params = {
|
||||
"api_key": self.endpoint_api_key.get_secret_value(),
|
||||
"base_url": self.endpoint_url,
|
||||
"timeout": timeout,
|
||||
"default_headers": None,
|
||||
"default_query": None,
|
||||
"http_client": None,
|
||||
}
|
||||
|
||||
async_client = openai.AsyncOpenAI(**client_params)
|
||||
message_dicts = [
|
||||
CustomOpenAIChatContentFormatter._convert_message_to_dict(m)
|
||||
for m in messages
|
||||
]
|
||||
params = {"stream": True, "stop": stop, "model": None, **kwargs}
|
||||
|
||||
default_chunk_class = AIMessageChunk
|
||||
async for chunk in await async_client.chat.completions.create(
|
||||
messages=message_dicts, **params
|
||||
):
|
||||
if not isinstance(chunk, dict):
|
||||
chunk = chunk.dict()
|
||||
if len(chunk["choices"]) == 0:
|
||||
continue
|
||||
choice = chunk["choices"][0]
|
||||
chunk = _convert_delta_to_message_chunk(
|
||||
choice["delta"], default_chunk_class
|
||||
)
|
||||
generation_info = {}
|
||||
if finish_reason := choice.get("finish_reason"):
|
||||
generation_info["finish_reason"] = finish_reason
|
||||
logprobs = choice.get("logprobs")
|
||||
if logprobs:
|
||||
generation_info["logprobs"] = logprobs
|
||||
default_chunk_class = chunk.__class__
|
||||
chunk = ChatGenerationChunk(
|
||||
message=chunk, generation_info=generation_info or None
|
||||
)
|
||||
if run_manager:
|
||||
await run_manager.on_llm_new_token(
|
||||
token=chunk.text, chunk=chunk, logprobs=logprobs
|
||||
)
|
||||
yield chunk
|
||||
|
||||
|
||||
def _convert_delta_to_message_chunk(
|
||||
_dict: Mapping[str, Any], default_class: Type[BaseMessageChunk]
|
||||
) -> BaseMessageChunk:
|
||||
role = cast(str, _dict.get("role"))
|
||||
content = cast(str, _dict.get("content") or "")
|
||||
additional_kwargs: Dict = {}
|
||||
if _dict.get("function_call"):
|
||||
function_call = dict(_dict["function_call"])
|
||||
if "name" in function_call and function_call["name"] is None:
|
||||
function_call["name"] = ""
|
||||
additional_kwargs["function_call"] = function_call
|
||||
if _dict.get("tool_calls"):
|
||||
additional_kwargs["tool_calls"] = _dict["tool_calls"]
|
||||
|
||||
if role == "user" or default_class == HumanMessageChunk:
|
||||
return HumanMessageChunk(content=content)
|
||||
elif role == "assistant" or default_class == AIMessageChunk:
|
||||
return AIMessageChunk(content=content, additional_kwargs=additional_kwargs)
|
||||
elif role == "system" or default_class == SystemMessageChunk:
|
||||
return SystemMessageChunk(content=content)
|
||||
elif role == "function" or default_class == FunctionMessageChunk:
|
||||
return FunctionMessageChunk(content=content, name=_dict["name"])
|
||||
elif role == "tool" or default_class == ToolMessageChunk:
|
||||
return ToolMessageChunk(content=content, tool_call_id=_dict["tool_call_id"])
|
||||
elif role or default_class == ChatMessageChunk:
|
||||
return ChatMessageChunk(content=content, role=role)
|
||||
else:
|
||||
return default_class(content=content)
|
||||
|
@ -62,12 +62,14 @@ class AzureMLEndpointClient(object):
|
||||
|
||||
|
||||
class AzureMLEndpointApiType(str, Enum):
|
||||
"""Azure ML endpoints API types. Use `realtime` for models deployed in hosted
|
||||
infrastructure, or `serverless` for models deployed as a service with a
|
||||
"""Azure ML endpoints API types. Use `dedicated` for models deployed in hosted
|
||||
infrastructure (also known as Online Endpoints in Azure Machine Learning),
|
||||
or `serverless` for models deployed as a service with a
|
||||
pay-as-you-go billing or PTU.
|
||||
"""
|
||||
|
||||
realtime = "realtime"
|
||||
dedicated = "dedicated"
|
||||
realtime = "realtime" #: Deprecated
|
||||
serverless = "serverless"
|
||||
|
||||
|
||||
@ -141,13 +143,13 @@ class ContentFormatterBase:
|
||||
deploying models using different hosting methods. Each method may have
|
||||
a different API structure."""
|
||||
|
||||
return [AzureMLEndpointApiType.realtime]
|
||||
return [AzureMLEndpointApiType.dedicated]
|
||||
|
||||
def format_request_payload(
|
||||
self,
|
||||
prompt: str,
|
||||
model_kwargs: Dict,
|
||||
api_type: AzureMLEndpointApiType = AzureMLEndpointApiType.realtime,
|
||||
api_type: AzureMLEndpointApiType = AzureMLEndpointApiType.dedicated,
|
||||
) -> Any:
|
||||
"""Formats the request body according to the input schema of
|
||||
the model. Returns bytes or seekable file like object in the
|
||||
@ -159,7 +161,7 @@ class ContentFormatterBase:
|
||||
def format_response_payload(
|
||||
self,
|
||||
output: bytes,
|
||||
api_type: AzureMLEndpointApiType = AzureMLEndpointApiType.realtime,
|
||||
api_type: AzureMLEndpointApiType = AzureMLEndpointApiType.dedicated,
|
||||
) -> Generation:
|
||||
"""Formats the response body according to the output
|
||||
schema of the model. Returns the data type that is
|
||||
@ -172,7 +174,7 @@ class GPT2ContentFormatter(ContentFormatterBase):
|
||||
|
||||
@property
|
||||
def supported_api_types(self) -> List[AzureMLEndpointApiType]:
|
||||
return [AzureMLEndpointApiType.realtime]
|
||||
return [AzureMLEndpointApiType.dedicated]
|
||||
|
||||
def format_request_payload( # type: ignore[override]
|
||||
self, prompt: str, model_kwargs: Dict, api_type: AzureMLEndpointApiType
|
||||
@ -214,7 +216,7 @@ class HFContentFormatter(ContentFormatterBase):
|
||||
|
||||
@property
|
||||
def supported_api_types(self) -> List[AzureMLEndpointApiType]:
|
||||
return [AzureMLEndpointApiType.realtime]
|
||||
return [AzureMLEndpointApiType.dedicated]
|
||||
|
||||
def format_request_payload( # type: ignore[override]
|
||||
self, prompt: str, model_kwargs: Dict, api_type: AzureMLEndpointApiType
|
||||
@ -240,7 +242,7 @@ class DollyContentFormatter(ContentFormatterBase):
|
||||
|
||||
@property
|
||||
def supported_api_types(self) -> List[AzureMLEndpointApiType]:
|
||||
return [AzureMLEndpointApiType.realtime]
|
||||
return [AzureMLEndpointApiType.dedicated]
|
||||
|
||||
def format_request_payload( # type: ignore[override]
|
||||
self, prompt: str, model_kwargs: Dict, api_type: AzureMLEndpointApiType
|
||||
@ -264,19 +266,22 @@ class DollyContentFormatter(ContentFormatterBase):
|
||||
return Generation(text=choice)
|
||||
|
||||
|
||||
class LlamaContentFormatter(ContentFormatterBase):
|
||||
"""Content formatter for LLaMa"""
|
||||
class CustomOpenAIContentFormatter(ContentFormatterBase):
|
||||
"""Content formatter for models that use the OpenAI like API scheme."""
|
||||
|
||||
@property
|
||||
def supported_api_types(self) -> List[AzureMLEndpointApiType]:
|
||||
return [AzureMLEndpointApiType.realtime, AzureMLEndpointApiType.serverless]
|
||||
return [AzureMLEndpointApiType.dedicated, AzureMLEndpointApiType.serverless]
|
||||
|
||||
def format_request_payload( # type: ignore[override]
|
||||
self, prompt: str, model_kwargs: Dict, api_type: AzureMLEndpointApiType
|
||||
) -> bytes:
|
||||
"""Formats the request according to the chosen api"""
|
||||
prompt = ContentFormatterBase.escape_special_characters(prompt)
|
||||
if api_type == AzureMLEndpointApiType.realtime:
|
||||
if api_type in [
|
||||
AzureMLEndpointApiType.dedicated,
|
||||
AzureMLEndpointApiType.realtime,
|
||||
]:
|
||||
request_payload = json.dumps(
|
||||
{
|
||||
"input_data": {
|
||||
@ -297,7 +302,10 @@ class LlamaContentFormatter(ContentFormatterBase):
|
||||
self, output: bytes, api_type: AzureMLEndpointApiType
|
||||
) -> Generation:
|
||||
"""Formats response"""
|
||||
if api_type == AzureMLEndpointApiType.realtime:
|
||||
if api_type in [
|
||||
AzureMLEndpointApiType.dedicated,
|
||||
AzureMLEndpointApiType.realtime,
|
||||
]:
|
||||
try:
|
||||
choice = json.loads(output)[0]["0"]
|
||||
except (KeyError, IndexError, TypeError) as e:
|
||||
@ -324,6 +332,22 @@ class LlamaContentFormatter(ContentFormatterBase):
|
||||
raise ValueError(f"`api_type` {api_type} is not supported by this formatter")
|
||||
|
||||
|
||||
class LlamaContentFormatter(CustomOpenAIContentFormatter):
|
||||
"""Deprecated: Kept for backwards compatibility
|
||||
|
||||
Content formatter for Llama."""
|
||||
|
||||
content_formatter: Any = None
|
||||
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
warnings.warn(
|
||||
"""`LlamaContentFormatter` will be deprecated in the future.
|
||||
Please use `CustomOpenAIContentFormatter` instead.
|
||||
"""
|
||||
)
|
||||
|
||||
|
||||
class AzureMLBaseEndpoint(BaseModel):
|
||||
"""Azure ML Online Endpoint models."""
|
||||
|
||||
@ -331,9 +355,9 @@ class AzureMLBaseEndpoint(BaseModel):
|
||||
"""URL of pre-existing Endpoint. Should be passed to constructor or specified as
|
||||
env var `AZUREML_ENDPOINT_URL`."""
|
||||
|
||||
endpoint_api_type: AzureMLEndpointApiType = AzureMLEndpointApiType.realtime
|
||||
endpoint_api_type: AzureMLEndpointApiType = AzureMLEndpointApiType.dedicated
|
||||
"""Type of the endpoint being consumed. Possible values are `serverless` for
|
||||
pay-as-you-go and `realtime` for real-time endpoints. """
|
||||
pay-as-you-go and `dedicated` for dedicated endpoints. """
|
||||
|
||||
endpoint_api_key: SecretStr = convert_to_secret_str("")
|
||||
"""Authentication Key for Endpoint. Should be passed to constructor or specified as
|
||||
@ -348,6 +372,8 @@ class AzureMLBaseEndpoint(BaseModel):
|
||||
|
||||
http_client: Any = None #: :meta private:
|
||||
|
||||
max_retries: int = 1
|
||||
|
||||
content_formatter: Any = None
|
||||
"""The content formatter that provides an input and output
|
||||
transform function to handle formats between the LLM and
|
||||
@ -371,7 +397,7 @@ class AzureMLBaseEndpoint(BaseModel):
|
||||
values,
|
||||
"endpoint_api_type",
|
||||
"AZUREML_ENDPOINT_API_TYPE",
|
||||
AzureMLEndpointApiType.realtime,
|
||||
AzureMLEndpointApiType.dedicated,
|
||||
)
|
||||
values["timeout"] = get_from_dict_or_env(
|
||||
values,
|
||||
@ -404,7 +430,7 @@ class AzureMLBaseEndpoint(BaseModel):
|
||||
if field_value.endswith("inference.ml.azure.com"):
|
||||
raise ValueError(
|
||||
"`endpoint_url` should contain the full invocation URL including "
|
||||
"`/score` for `endpoint_api_type='realtime'` or `/v1/completions` "
|
||||
"`/score` for `endpoint_api_type='dedicated'` or `/v1/completions` "
|
||||
"or `/v1/chat/completions` for `endpoint_api_type='serverless'`"
|
||||
)
|
||||
return field_value
|
||||
@ -415,11 +441,15 @@ class AzureMLBaseEndpoint(BaseModel):
|
||||
) -> AzureMLEndpointApiType:
|
||||
"""Validate that endpoint api type is compatible with the URL format."""
|
||||
endpoint_url = values.get("endpoint_url")
|
||||
if field_value == AzureMLEndpointApiType.realtime and not endpoint_url.endswith( # type: ignore[union-attr]
|
||||
"/score"
|
||||
if (
|
||||
(
|
||||
field_value == AzureMLEndpointApiType.dedicated
|
||||
or field_value == AzureMLEndpointApiType.realtime
|
||||
)
|
||||
and not endpoint_url.endswith("/score") # type: ignore[union-attr]
|
||||
):
|
||||
raise ValueError(
|
||||
"Endpoints of type `realtime` should follow the format "
|
||||
"Endpoints of type `dedicated` should follow the format "
|
||||
"`https://<your-endpoint>.<your_region>.inference.ml.azure.com/score`."
|
||||
" If your endpoint URL ends with `/v1/completions` or"
|
||||
"`/v1/chat/completions`, use `endpoint_api_type='serverless'` instead."
|
||||
@ -461,7 +491,7 @@ class AzureMLOnlineEndpoint(BaseLLM, AzureMLBaseEndpoint):
|
||||
.. code-block:: python
|
||||
azure_llm = AzureMLOnlineEndpoint(
|
||||
endpoint_url="https://<your-endpoint>.<your_region>.inference.ml.azure.com/score",
|
||||
endpoint_api_type=AzureMLApiType.realtime,
|
||||
endpoint_api_type=AzureMLApiType.dedicated,
|
||||
endpoint_api_key="my-api-key",
|
||||
timeout=120,
|
||||
content_formatter=content_formatter,
|
||||
|
@ -5,13 +5,15 @@ from langchain_core.outputs import ChatGeneration, LLMResult
|
||||
|
||||
from langchain_community.chat_models.azureml_endpoint import (
|
||||
AzureMLChatOnlineEndpoint,
|
||||
LlamaChatContentFormatter,
|
||||
CustomOpenAIChatContentFormatter,
|
||||
)
|
||||
|
||||
|
||||
def test_llama_call() -> None:
|
||||
"""Test valid call to Open Source Foundation Model."""
|
||||
chat = AzureMLChatOnlineEndpoint(content_formatter=LlamaChatContentFormatter())
|
||||
chat = AzureMLChatOnlineEndpoint(
|
||||
content_formatter=CustomOpenAIChatContentFormatter()
|
||||
)
|
||||
response = chat.invoke([HumanMessage(content="Foo")])
|
||||
assert isinstance(response, BaseMessage)
|
||||
assert isinstance(response.content, str)
|
||||
@ -19,7 +21,9 @@ def test_llama_call() -> None:
|
||||
|
||||
def test_temperature_kwargs() -> None:
|
||||
"""Test that timeout kwarg works."""
|
||||
chat = AzureMLChatOnlineEndpoint(content_formatter=LlamaChatContentFormatter())
|
||||
chat = AzureMLChatOnlineEndpoint(
|
||||
content_formatter=CustomOpenAIChatContentFormatter()
|
||||
)
|
||||
response = chat.invoke([HumanMessage(content="FOO")], temperature=0.8)
|
||||
assert isinstance(response, BaseMessage)
|
||||
assert isinstance(response.content, str)
|
||||
@ -27,7 +31,9 @@ def test_temperature_kwargs() -> None:
|
||||
|
||||
def test_message_history() -> None:
|
||||
"""Test that multiple messages works."""
|
||||
chat = AzureMLChatOnlineEndpoint(content_formatter=LlamaChatContentFormatter())
|
||||
chat = AzureMLChatOnlineEndpoint(
|
||||
content_formatter=CustomOpenAIChatContentFormatter()
|
||||
)
|
||||
response = chat.invoke(
|
||||
[
|
||||
HumanMessage(content="Hello."),
|
||||
@ -40,7 +46,9 @@ def test_message_history() -> None:
|
||||
|
||||
|
||||
def test_multiple_messages() -> None:
|
||||
chat = AzureMLChatOnlineEndpoint(content_formatter=LlamaChatContentFormatter())
|
||||
chat = AzureMLChatOnlineEndpoint(
|
||||
content_formatter=CustomOpenAIChatContentFormatter()
|
||||
)
|
||||
message = HumanMessage(content="Hi!")
|
||||
response = chat.generate([[message], [message]])
|
||||
|
||||
|
@ -2,10 +2,10 @@ from langchain_community.llms.azureml_endpoint import (
|
||||
AzureMLEndpointClient,
|
||||
AzureMLOnlineEndpoint,
|
||||
ContentFormatterBase,
|
||||
CustomOpenAIContentFormatter,
|
||||
DollyContentFormatter,
|
||||
GPT2ContentFormatter,
|
||||
HFContentFormatter,
|
||||
LlamaContentFormatter,
|
||||
OSSContentFormatter,
|
||||
)
|
||||
|
||||
@ -16,6 +16,6 @@ __all__ = [
|
||||
"OSSContentFormatter",
|
||||
"HFContentFormatter",
|
||||
"DollyContentFormatter",
|
||||
"LlamaContentFormatter",
|
||||
"CustomOpenAIContentFormatter",
|
||||
"AzureMLOnlineEndpoint",
|
||||
]
|
||||
|
Loading…
Reference in New Issue
Block a user