langchain[patch], experimental[minor]: Adds OllamaFunctions wrapper (#13330)

CC @baskaryan @hwchase17 @jmorganca 

Having a bit of trouble importing `langchain_experimental` from a
notebook, will figure it out tomorrow

~Ah and also is blocked by #13226~

---------

Co-authored-by: Lance Martin <lance@langchain.dev>
Co-authored-by: Bagatur <baskaryan@gmail.com>
This commit is contained in:
Jacob Lee 2023-11-30 16:13:57 -08:00 committed by GitHub
parent 4063bf144a
commit 3328507f11
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 529 additions and 6 deletions

View File

@ -119,6 +119,159 @@
"chat_model(messages)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Extraction\n",
" \n",
"Update your version of Ollama and supply the [`format`](https://github.com/jmorganca/ollama/blob/main/docs/api.md#json-mode) flag.\n",
"\n",
"We can enforce the model to produce JSON.\n",
"\n",
"**Note:** You can also try out the experimental [OllamaFunctions](https://python.langchain.com/docs/integrations/chat/ollama_functions) wrapper for convenience."
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"from langchain.callbacks.manager import CallbackManager\n",
"from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler\n",
"from langchain.chat_models import ChatOllama\n",
"\n",
"chat_model = ChatOllama(\n",
" model=\"llama2\",\n",
" format=\"json\",\n",
" callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]),\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" Sure! Here's a JSON response with the colors of the sky at different times of the day:\n",
" Begriffe und Abkürzungen:\n",
"\n",
"* `time`: The time of day (in 24-hour format)\n",
"* `sky_color`: The color of the sky at that time (as a hex code)\n",
"\n",
"Here are the colors of the sky at different times of the day:\n",
"```json\n",
"[\n",
" {\n",
" \"time\": \"6am\",\n",
" \"sky_color\": \"#0080c0\"\n",
" },\n",
" {\n",
" \"time\": \"9am\",\n",
" \"sky_color\": \"#3498db\"\n",
" },\n",
" {\n",
" \"time\": \"12pm\",\n",
" \"sky_color\": \"#ef7c00\"\n",
" },\n",
" {\n",
" \"time\": \"3pm\",\n",
" \"sky_color\": \"#9564b6\"\n",
" },\n",
" {\n",
" \"time\": \"6pm\",\n",
" \"sky_color\": \"#e78ac3\"\n",
" },\n",
" {\n",
" \"time\": \"9pm\",\n",
" \"sky_color\": \"#5f006a\"\n",
" }\n",
"]\n",
"```\n",
"In this response, the `time` property is a string in 24-hour format, representing the time of day. The `sky_color` property is a hex code representing the color of the sky at that time. For example, at 6am, the sky is blue (#0080c0), while at 9pm, it's dark blue (#5f006a)."
]
}
],
"source": [
"from langchain.schema import HumanMessage\n",
"\n",
"messages = [\n",
" HumanMessage(\n",
" content=\"What color is the sky at different times of the day? Respond using JSON\"\n",
" )\n",
"]\n",
"\n",
"chat_model_response = chat_model(messages)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" Sure! Based on the JSON schema you provided, here's the information we can gather about a person named John who is 35 years old and loves pizza:\n",
"\n",
"**Name:** John\n",
"\n",
"**Age:** 35 (integer)\n",
"\n",
"**Favorite food:** Pizza (string)\n",
"\n",
"So, the JSON object for John would look like this:\n",
"```json\n",
"{\n",
" \"name\": \"John\",\n",
" \"age\": 35,\n",
" \"fav_food\": \"pizza\"\n",
"}\n",
"```\n",
"Note that we cannot provide additional information about John beyond what is specified in the schema. For example, we do not have any information about his gender, occupation, or address, as those fields are not included in the schema."
]
}
],
"source": [
"import json\n",
"\n",
"from langchain.schema import HumanMessage\n",
"\n",
"json_schema = {\n",
" \"title\": \"Person\",\n",
" \"description\": \"Identifying information about a person.\",\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"name\": {\"title\": \"Name\", \"description\": \"The person's name\", \"type\": \"string\"},\n",
" \"age\": {\"title\": \"Age\", \"description\": \"The person's age\", \"type\": \"integer\"},\n",
" \"fav_food\": {\n",
" \"title\": \"Fav Food\",\n",
" \"description\": \"The person's favorite food\",\n",
" \"type\": \"string\",\n",
" },\n",
" },\n",
" \"required\": [\"name\", \"age\"],\n",
"}\n",
"\n",
"messages = [\n",
" HumanMessage(\n",
" content=\"Please tell me about a person using the following JSON schema:\"\n",
" ),\n",
" HumanMessage(content=json.dumps(json_schema, indent=2)),\n",
" HumanMessage(\n",
" content=\"Now, considering the schema, tell me about a person named John who is 35 years old and loves pizza.\"\n",
" ),\n",
"]\n",
"\n",
"chat_model_response = chat_model(messages)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@ -375,5 +528,5 @@
}
},
"nbformat": 4,
"nbformat_minor": 2
"nbformat_minor": 4
}

View File

@ -0,0 +1,171 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Ollama Functions\n",
"\n",
"This notebook shows how to use an experimental wrapper around Ollama that gives it the same API as OpenAI Functions.\n",
"\n",
"Note that more powerful and capable models will perform better with complex schema and/or multiple functions. The examples below use Mistral.\n",
"For a complete list of supported models and model variants, see the [Ollama model library](https://ollama.ai/library).\n",
"\n",
"## Setup\n",
"\n",
"Follow [these instructions](https://github.com/jmorganca/ollama) to set up and run a local Ollama instance.\n",
"\n",
"## Usage\n",
"\n",
"You can initialize OllamaFunctions in a similar way to how you'd initialize a standard ChatOllama instance:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from langchain_experimental.llms.ollama_functions import OllamaFunctions\n",
"\n",
"model = OllamaFunctions(model=\"mistral\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can then bind functions defined with JSON Schema parameters and a `function_call` parameter to force the model to call the given function:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"model = model.bind(\n",
" functions=[\n",
" {\n",
" \"name\": \"get_current_weather\",\n",
" \"description\": \"Get the current weather in a given location\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"location\": {\n",
" \"type\": \"string\",\n",
" \"description\": \"The city and state, \" \"e.g. San Francisco, CA\",\n",
" },\n",
" \"unit\": {\n",
" \"type\": \"string\",\n",
" \"enum\": [\"celsius\", \"fahrenheit\"],\n",
" },\n",
" },\n",
" \"required\": [\"location\"],\n",
" },\n",
" }\n",
" ],\n",
" function_call={\"name\": \"get_current_weather\"},\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Calling a function with this model then results in JSON output matching the provided schema:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='', additional_kwargs={'function_call': {'name': 'get_current_weather', 'arguments': '{\"location\": \"Boston, MA\", \"unit\": \"celsius\"}'}})"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.schema import HumanMessage\n",
"\n",
"model.invoke(\"what is the weather in Boston?\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Using for extraction\n",
"\n",
"One useful thing you can do with function calling here is extracting properties from a given input in a structured format:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'name': 'Alex', 'height': 5, 'hair_color': 'blonde'},\n",
" {'name': 'Claudia', 'height': 6, 'hair_color': 'brunette'}]"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.chains import create_extraction_chain\n",
"\n",
"# Schema\n",
"schema = {\n",
" \"properties\": {\n",
" \"name\": {\"type\": \"string\"},\n",
" \"height\": {\"type\": \"integer\"},\n",
" \"hair_color\": {\"type\": \"string\"},\n",
" },\n",
" \"required\": [\"name\", \"height\"],\n",
"}\n",
"\n",
"# Input\n",
"input = \"\"\"Alex is 5 feet tall. Claudia is 1 feet taller than Alex and jumps higher than him. Claudia is a brunette and Alex is blonde.\"\"\"\n",
"\n",
"# Run chain\n",
"llm = OllamaFunctions(model=\"mistral\", temperature=0)\n",
"chain = create_extraction_chain(schema, llm)\n",
"chain.run(input)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@ -0,0 +1,141 @@
import json
from typing import Any, Dict, List, Optional
from langchain.chat_models.ollama import ChatOllama
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models import BaseChatModel
from langchain_core.messages import AIMessage, BaseMessage
from langchain_core.outputs import ChatGeneration, ChatResult
from langchain_core.prompts import SystemMessagePromptTemplate
from langchain_experimental.pydantic_v1 import root_validator
DEFAULT_SYSTEM_TEMPLATE = """You have access to the following tools:
{tools}
You must always select one of the above tools and respond with only a JSON object matching the following schema:
{{
"tool": <name of the selected tool>,
"tool_input": <parameters for the selected tool, matching the tool's JSON schema>
}}
""" # noqa: E501
DEFAULT_RESPONSE_FUNCTION = {
"name": "__conversational_response",
"description": (
"Respond conversationally if no other tools should be called for a given query."
),
"parameters": {
"type": "object",
"properties": {
"response": {
"type": "string",
"description": "Conversational response to the user.",
},
},
"required": ["response"],
},
}
class OllamaFunctions(BaseChatModel):
llm: ChatOllama
tool_system_prompt_template: str
@root_validator(pre=True)
def validate_environment(cls, values: Dict) -> Dict:
values["llm"] = values.get("llm") or ChatOllama(**values, format="json")
values["tool_system_prompt_template"] = (
values.get("tool_system_prompt_template") or DEFAULT_SYSTEM_TEMPLATE
)
return values
@property
def model(self) -> BaseChatModel:
"""For backwards compatibility."""
return self.llm
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
functions = kwargs.get("functions", [])
if "function_call" in kwargs:
functions = [
fn for fn in functions if fn["name"] == kwargs["function_call"]["name"]
]
if not functions:
raise ValueError(
'If "function_call" is specified, you must also pass a matching \
function in "functions".'
)
del kwargs["function_call"]
elif not functions:
functions.append(DEFAULT_RESPONSE_FUNCTION)
system_message_prompt_template = SystemMessagePromptTemplate.from_template(
self.tool_system_prompt_template
)
system_message = system_message_prompt_template.format(
tools=json.dumps(functions, indent=2)
)
if "functions" in kwargs:
del kwargs["functions"]
response_message = self.llm.predict_messages(
[system_message] + messages, stop=stop, callbacks=run_manager, **kwargs
)
chat_generation_content = response_message.content
if not isinstance(chat_generation_content, str):
raise ValueError("OllamaFunctions does not support non-string output.")
try:
parsed_chat_result = json.loads(chat_generation_content)
except json.JSONDecodeError:
raise ValueError(
f'"{self.llm.model}" did not respond with valid JSON. Please try again.'
)
called_tool_name = parsed_chat_result["tool"]
called_tool_arguments = parsed_chat_result["tool_input"]
called_tool = next(
(fn for fn in functions if fn["name"] == called_tool_name), None
)
if called_tool is None:
raise ValueError(
f"Failed to parse a function call from {self.llm.model} \
output: {chat_generation_content}"
)
if called_tool["name"] == DEFAULT_RESPONSE_FUNCTION["name"]:
return ChatResult(
generations=[
ChatGeneration(
message=AIMessage(
content=called_tool_arguments["response"],
)
)
]
)
response_message_with_functions = AIMessage(
content="",
additional_kwargs={
"function_call": {
"name": called_tool_name,
"arguments": json.dumps(called_tool_arguments)
if called_tool_arguments
else "",
},
},
)
return ChatResult(
generations=[ChatGeneration(message=response_message_with_functions)]
)
@property
def _llm_type(self) -> str:
return "ollama_functions"

View File

@ -1642,7 +1642,7 @@ files = [
[[package]]
name = "langchain"
version = "0.0.342"
version = "0.0.343"
description = "Building applications with LLMs through composability"
optional = false
python-versions = ">=3.8.1,<4.0"
@ -1665,14 +1665,14 @@ SQLAlchemy = ">=1.4,<3"
tenacity = "^8.1.0"
[package.extras]
all = ["O365 (>=2.0.26,<3.0.0)", "aleph-alpha-client (>=2.15.0,<3.0.0)", "amadeus (>=8.1.0)", "arxiv (>=1.4,<2.0)", "atlassian-python-api (>=3.36.0,<4.0.0)", "awadb (>=0.3.9,<0.4.0)", "azure-ai-formrecognizer (>=3.2.1,<4.0.0)", "azure-ai-textanalytics (>=5.3.0,<6.0.0)", "azure-ai-vision (>=0.11.1b1,<0.12.0)", "azure-cognitiveservices-speech (>=1.28.0,<2.0.0)", "azure-cosmos (>=4.4.0b1,<5.0.0)", "azure-identity (>=1.12.0,<2.0.0)", "beautifulsoup4 (>=4,<5)", "clarifai (>=9.1.0)", "clickhouse-connect (>=0.5.14,<0.6.0)", "cohere (>=4,<5)", "deeplake (>=3.8.3,<4.0.0)", "docarray[hnswlib] (>=0.32.0,<0.33.0)", "duckduckgo-search (>=3.8.3,<4.0.0)", "elasticsearch (>=8,<9)", "esprima (>=4.0.1,<5.0.0)", "faiss-cpu (>=1,<2)", "google-api-python-client (==2.70.0)", "google-auth (>=2.18.1,<3.0.0)", "google-search-results (>=2,<3)", "gptcache (>=0.1.7)", "html2text (>=2020.1.16,<2021.0.0)", "huggingface_hub (>=0,<1)", "jinja2 (>=3,<4)", "jq (>=1.4.1,<2.0.0)", "lancedb (>=0.1,<0.2)", "langkit (>=0.0.6,<0.1.0)", "lark (>=1.1.5,<2.0.0)", "librosa (>=0.10.0.post2,<0.11.0)", "lxml (>=4.9.2,<5.0.0)", "manifest-ml (>=0.0.1,<0.0.2)", "marqo (>=1.2.4,<2.0.0)", "momento (>=1.13.0,<2.0.0)", "nebula3-python (>=3.4.0,<4.0.0)", "neo4j (>=5.8.1,<6.0.0)", "networkx (>=2.6.3,<4)", "nlpcloud (>=1,<2)", "nltk (>=3,<4)", "nomic (>=1.0.43,<2.0.0)", "openai (<2)", "openlm (>=0.0.5,<0.0.6)", "opensearch-py (>=2.0.0,<3.0.0)", "pdfminer-six (>=20221105,<20221106)", "pexpect (>=4.8.0,<5.0.0)", "pgvector (>=0.1.6,<0.2.0)", "pinecone-client (>=2,<3)", "pinecone-text (>=0.4.2,<0.5.0)", "psycopg2-binary (>=2.9.5,<3.0.0)", "pymongo (>=4.3.3,<5.0.0)", "pyowm (>=3.3.0,<4.0.0)", "pypdf (>=3.4.0,<4.0.0)", "pytesseract (>=0.3.10,<0.4.0)", "python-arango (>=7.5.9,<8.0.0)", "pyvespa (>=0.33.0,<0.34.0)", "qdrant-client (>=1.3.1,<2.0.0)", "rdflib (>=6.3.2,<7.0.0)", "redis (>=4,<5)", "requests-toolbelt (>=1.0.0,<2.0.0)", "sentence-transformers (>=2,<3)", "singlestoredb (>=0.7.1,<0.8.0)", "tensorflow-text (>=2.11.0,<3.0.0)", "tigrisdb (>=1.0.0b6,<2.0.0)", "tiktoken (>=0.3.2,<0.6.0)", "torch (>=1,<3)", "transformers (>=4,<5)", "weaviate-client (>=3,<4)", "wikipedia (>=1,<2)", "wolframalpha (==5.0.0)"]
all = ["O365 (>=2.0.26,<3.0.0)", "aleph-alpha-client (>=2.15.0,<3.0.0)", "amadeus (>=8.1.0)", "arxiv (>=1.4,<2.0)", "atlassian-python-api (>=3.36.0,<4.0.0)", "awadb (>=0.3.9,<0.4.0)", "azure-ai-formrecognizer (>=3.2.1,<4.0.0)", "azure-ai-textanalytics (>=5.3.0,<6.0.0)", "azure-ai-vision (>=0.11.1b1,<0.12.0)", "azure-cognitiveservices-speech (>=1.28.0,<2.0.0)", "azure-cosmos (>=4.4.0b1,<5.0.0)", "azure-identity (>=1.12.0,<2.0.0)", "beautifulsoup4 (>=4,<5)", "clarifai (>=9.1.0)", "clickhouse-connect (>=0.5.14,<0.6.0)", "cohere (>=4,<5)", "deeplake (>=3.8.3,<4.0.0)", "dgml-utils (>=0.3.0,<0.4.0)", "docarray[hnswlib] (>=0.32.0,<0.33.0)", "duckduckgo-search (>=3.8.3,<4.0.0)", "elasticsearch (>=8,<9)", "esprima (>=4.0.1,<5.0.0)", "faiss-cpu (>=1,<2)", "google-api-python-client (==2.70.0)", "google-auth (>=2.18.1,<3.0.0)", "google-search-results (>=2,<3)", "gptcache (>=0.1.7)", "html2text (>=2020.1.16,<2021.0.0)", "huggingface_hub (>=0,<1)", "jinja2 (>=3,<4)", "jq (>=1.4.1,<2.0.0)", "lancedb (>=0.1,<0.2)", "langkit (>=0.0.6,<0.1.0)", "lark (>=1.1.5,<2.0.0)", "librosa (>=0.10.0.post2,<0.11.0)", "lxml (>=4.9.2,<5.0.0)", "manifest-ml (>=0.0.1,<0.0.2)", "marqo (>=1.2.4,<2.0.0)", "momento (>=1.13.0,<2.0.0)", "nebula3-python (>=3.4.0,<4.0.0)", "neo4j (>=5.8.1,<6.0.0)", "networkx (>=2.6.3,<4)", "nlpcloud (>=1,<2)", "nltk (>=3,<4)", "nomic (>=1.0.43,<2.0.0)", "openai (<2)", "openlm (>=0.0.5,<0.0.6)", "opensearch-py (>=2.0.0,<3.0.0)", "pdfminer-six (>=20221105,<20221106)", "pexpect (>=4.8.0,<5.0.0)", "pgvector (>=0.1.6,<0.2.0)", "pinecone-client (>=2,<3)", "pinecone-text (>=0.4.2,<0.5.0)", "psycopg2-binary (>=2.9.5,<3.0.0)", "pymongo (>=4.3.3,<5.0.0)", "pyowm (>=3.3.0,<4.0.0)", "pypdf (>=3.4.0,<4.0.0)", "pytesseract (>=0.3.10,<0.4.0)", "python-arango (>=7.5.9,<8.0.0)", "pyvespa (>=0.33.0,<0.34.0)", "qdrant-client (>=1.3.1,<2.0.0)", "rdflib (>=6.3.2,<7.0.0)", "redis (>=4,<5)", "requests-toolbelt (>=1.0.0,<2.0.0)", "sentence-transformers (>=2,<3)", "singlestoredb (>=0.7.1,<0.8.0)", "tensorflow-text (>=2.11.0,<3.0.0)", "tigrisdb (>=1.0.0b6,<2.0.0)", "tiktoken (>=0.3.2,<0.6.0)", "torch (>=1,<3)", "transformers (>=4,<5)", "weaviate-client (>=3,<4)", "wikipedia (>=1,<2)", "wolframalpha (==5.0.0)"]
azure = ["azure-ai-formrecognizer (>=3.2.1,<4.0.0)", "azure-ai-textanalytics (>=5.3.0,<6.0.0)", "azure-ai-vision (>=0.11.1b1,<0.12.0)", "azure-cognitiveservices-speech (>=1.28.0,<2.0.0)", "azure-core (>=1.26.4,<2.0.0)", "azure-cosmos (>=4.4.0b1,<5.0.0)", "azure-identity (>=1.12.0,<2.0.0)", "azure-search-documents (==11.4.0b8)", "openai (<2)"]
clarifai = ["clarifai (>=9.1.0)"]
cli = ["typer (>=0.9.0,<0.10.0)"]
cohere = ["cohere (>=4,<5)"]
docarray = ["docarray[hnswlib] (>=0.32.0,<0.33.0)"]
embeddings = ["sentence-transformers (>=2,<3)"]
extended-testing = ["aiosqlite (>=0.19.0,<0.20.0)", "aleph-alpha-client (>=2.15.0,<3.0.0)", "anthropic (>=0.3.11,<0.4.0)", "arxiv (>=1.4,<2.0)", "assemblyai (>=0.17.0,<0.18.0)", "atlassian-python-api (>=3.36.0,<4.0.0)", "beautifulsoup4 (>=4,<5)", "bibtexparser (>=1.4.0,<2.0.0)", "cassio (>=0.1.0,<0.2.0)", "chardet (>=5.1.0,<6.0.0)", "dashvector (>=1.0.1,<2.0.0)", "databricks-vectorsearch (>=0.21,<0.22)", "esprima (>=4.0.1,<5.0.0)", "faiss-cpu (>=1,<2)", "feedparser (>=6.0.10,<7.0.0)", "fireworks-ai (>=0.6.0,<0.7.0)", "geopandas (>=0.13.1,<0.14.0)", "gitpython (>=3.1.32,<4.0.0)", "google-cloud-documentai (>=2.20.1,<3.0.0)", "gql (>=3.4.1,<4.0.0)", "html2text (>=2020.1.16,<2021.0.0)", "javelin-sdk (>=0.1.8,<0.2.0)", "jinja2 (>=3,<4)", "jq (>=1.4.1,<2.0.0)", "jsonschema (>1)", "lxml (>=4.9.2,<5.0.0)", "markdownify (>=0.11.6,<0.12.0)", "motor (>=3.3.1,<4.0.0)", "msal (>=1.25.0,<2.0.0)", "mwparserfromhell (>=0.6.4,<0.7.0)", "mwxml (>=0.3.3,<0.4.0)", "newspaper3k (>=0.2.8,<0.3.0)", "numexpr (>=2.8.6,<3.0.0)", "openai (<2)", "openai (<2)", "openapi-pydantic (>=0.3.2,<0.4.0)", "pandas (>=2.0.1,<3.0.0)", "pdfminer-six (>=20221105,<20221106)", "pgvector (>=0.1.6,<0.2.0)", "psychicapi (>=0.8.0,<0.9.0)", "py-trello (>=0.19.0,<0.20.0)", "pymupdf (>=1.22.3,<2.0.0)", "pypdf (>=3.4.0,<4.0.0)", "pypdfium2 (>=4.10.0,<5.0.0)", "pyspark (>=3.4.0,<4.0.0)", "rank-bm25 (>=0.2.2,<0.3.0)", "rapidfuzz (>=3.1.1,<4.0.0)", "rapidocr-onnxruntime (>=1.3.2,<2.0.0)", "requests-toolbelt (>=1.0.0,<2.0.0)", "rspace_client (>=2.5.0,<3.0.0)", "scikit-learn (>=1.2.2,<2.0.0)", "sqlite-vss (>=0.1.2,<0.2.0)", "streamlit (>=1.18.0,<2.0.0)", "sympy (>=1.12,<2.0)", "telethon (>=1.28.5,<2.0.0)", "timescale-vector (>=0.0.1,<0.0.2)", "tqdm (>=4.48.0)", "upstash-redis (>=0.15.0,<0.16.0)", "xata (>=1.0.0a7,<2.0.0)", "xmltodict (>=0.13.0,<0.14.0)"]
extended-testing = ["aiosqlite (>=0.19.0,<0.20.0)", "aleph-alpha-client (>=2.15.0,<3.0.0)", "anthropic (>=0.3.11,<0.4.0)", "arxiv (>=1.4,<2.0)", "assemblyai (>=0.17.0,<0.18.0)", "atlassian-python-api (>=3.36.0,<4.0.0)", "beautifulsoup4 (>=4,<5)", "bibtexparser (>=1.4.0,<2.0.0)", "cassio (>=0.1.0,<0.2.0)", "chardet (>=5.1.0,<6.0.0)", "dashvector (>=1.0.1,<2.0.0)", "databricks-vectorsearch (>=0.21,<0.22)", "dgml-utils (>=0.3.0,<0.4.0)", "esprima (>=4.0.1,<5.0.0)", "faiss-cpu (>=1,<2)", "feedparser (>=6.0.10,<7.0.0)", "fireworks-ai (>=0.6.0,<0.7.0)", "geopandas (>=0.13.1,<0.14.0)", "gitpython (>=3.1.32,<4.0.0)", "google-cloud-documentai (>=2.20.1,<3.0.0)", "gql (>=3.4.1,<4.0.0)", "html2text (>=2020.1.16,<2021.0.0)", "javelin-sdk (>=0.1.8,<0.2.0)", "jinja2 (>=3,<4)", "jq (>=1.4.1,<2.0.0)", "jsonschema (>1)", "lxml (>=4.9.2,<5.0.0)", "markdownify (>=0.11.6,<0.12.0)", "motor (>=3.3.1,<4.0.0)", "msal (>=1.25.0,<2.0.0)", "mwparserfromhell (>=0.6.4,<0.7.0)", "mwxml (>=0.3.3,<0.4.0)", "newspaper3k (>=0.2.8,<0.3.0)", "numexpr (>=2.8.6,<3.0.0)", "openai (<2)", "openai (<2)", "openapi-pydantic (>=0.3.2,<0.4.0)", "pandas (>=2.0.1,<3.0.0)", "pdfminer-six (>=20221105,<20221106)", "pgvector (>=0.1.6,<0.2.0)", "psychicapi (>=0.8.0,<0.9.0)", "py-trello (>=0.19.0,<0.20.0)", "pymupdf (>=1.22.3,<2.0.0)", "pypdf (>=3.4.0,<4.0.0)", "pypdfium2 (>=4.10.0,<5.0.0)", "pyspark (>=3.4.0,<4.0.0)", "rank-bm25 (>=0.2.2,<0.3.0)", "rapidfuzz (>=3.1.1,<4.0.0)", "rapidocr-onnxruntime (>=1.3.2,<2.0.0)", "requests-toolbelt (>=1.0.0,<2.0.0)", "rspace_client (>=2.5.0,<3.0.0)", "scikit-learn (>=1.2.2,<2.0.0)", "sqlite-vss (>=0.1.2,<0.2.0)", "streamlit (>=1.18.0,<2.0.0)", "sympy (>=1.12,<2.0)", "telethon (>=1.28.5,<2.0.0)", "timescale-vector (>=0.0.1,<0.0.2)", "tqdm (>=4.48.0)", "upstash-redis (>=0.15.0,<0.16.0)", "xata (>=1.0.0a7,<2.0.0)", "xmltodict (>=0.13.0,<0.14.0)"]
javascript = ["esprima (>=4.0.1,<5.0.0)"]
llms = ["clarifai (>=9.1.0)", "cohere (>=4,<5)", "huggingface_hub (>=0,<1)", "manifest-ml (>=0.0.1,<0.0.2)", "nlpcloud (>=1,<2)", "openai (<2)", "openlm (>=0.0.5,<0.0.6)", "torch (>=1,<3)", "transformers (>=4,<5)"]
openai = ["openai (<2)", "tiktoken (>=0.3.2,<0.6.0)"]
@ -4931,4 +4931,4 @@ extended-testing = ["faker", "presidio-analyzer", "presidio-anonymizer", "senten
[metadata]
lock-version = "2.0"
python-versions = ">=3.8.1,<4.0"
content-hash = "42fe69b21c0dba3a3550be5a8ad127db8aa77c1d357ac5e39b3b426561c8dc0b"
content-hash = "5ea902253757caa8e1708b13096e13bdd16931a20c4ea0e402af5dfe1c8a30ac"

View File

@ -10,6 +10,7 @@ repository = "https://github.com/langchain-ai/langchain"
[tool.poetry.dependencies]
python = ">=3.8.1,<4.0"
langchain-core = ">=0.0.7,<0.1"
langchain = ">=0.0.342,<0.1"
presidio-anonymizer = {version = "^2.2.33", optional = true}
presidio-analyzer = {version = "^2.2.33", optional = true}

View File

@ -0,0 +1,49 @@
"""Test OllamaFunctions"""
import unittest
from langchain.chat_models.ollama import ChatOllama
from langchain_experimental.llms.ollama_functions import OllamaFunctions
class TestOllamaFunctions(unittest.TestCase):
"""
Test OllamaFunctions
"""
def test_default_ollama_functions(self) -> None:
base_model = OllamaFunctions(model="mistral")
self.assertIsInstance(base_model.model, ChatOllama)
# bind functions
model = base_model.bind(
functions=[
{
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, "
"e.g. San Francisco, CA",
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
},
},
"required": ["location"],
},
}
],
function_call={"name": "get_current_weather"},
)
res = model.invoke("What's the weather in San Francisco?")
function_call = res.additional_kwargs.get("function_call")
assert function_call
self.assertEqual(function_call.get("name"), "get_current_weather")

View File

@ -94,11 +94,18 @@ class _OllamaCommon(BaseLanguageModel):
template: Optional[str] = None
"""full prompt or prompt template (overrides what is defined in the Modelfile)"""
format: Optional[str] = None
"""Specify the format of the output (e.g., json)"""
timeout: Optional[int] = None
"""Timeout for the request stream"""
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling Ollama."""
return {
"model": self.model,
"format": self.format,
"options": {
"mirostat": self.mirostat,
"mirostat_eta": self.mirostat_eta,
@ -121,7 +128,7 @@ class _OllamaCommon(BaseLanguageModel):
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {**{"model": self.model}, **self._default_params}
return {**{"model": self.model, "format": self.format}, **self._default_params}
def _create_stream(
self,
@ -155,6 +162,7 @@ class _OllamaCommon(BaseLanguageModel):
headers={"Content-Type": "application/json"},
json={"prompt": prompt, **params},
stream=True,
timeout=self.timeout,
)
response.encoding = "utf-8"
if response.status_code != 200: