core[minor]: Add async methods to MaxMarginalRelevanceExampleSelector (#19639)

This commit is contained in:
Christophe Bornet 2024-03-27 21:03:18 +01:00 committed by GitHub
parent 72c8b3127d
commit 33fa8cfcd0
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 213 additions and 32 deletions

View File

@ -1,6 +1,7 @@
"""Example selector that selects examples based on SemanticSimilarity."""
from __future__ import annotations
from abc import ABC
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Type
from langchain_core.documents import Document
@ -17,7 +18,7 @@ def sorted_values(values: Dict[str, str]) -> List[Any]:
return [values[val] for val in sorted(values)]
class SemanticSimilarityExampleSelector(BaseExampleSelector, BaseModel):
class _VectorStoreExampleSelector(BaseExampleSelector, BaseModel, ABC):
"""Example selector that selects examples based on SemanticSimilarity."""
vectorstore: VectorStore
@ -70,6 +71,10 @@ class SemanticSimilarityExampleSelector(BaseExampleSelector, BaseModel):
)
return ids[0]
class SemanticSimilarityExampleSelector(_VectorStoreExampleSelector):
"""Example selector that selects examples based on SemanticSimilarity."""
def select_examples(self, input_variables: Dict[str, str]) -> List[dict]:
"""Select which examples to use based on semantic similarity."""
# Get the docs with the highest similarity.
@ -116,6 +121,9 @@ class SemanticSimilarityExampleSelector(BaseExampleSelector, BaseModel):
k: Number of examples to select
input_keys: If provided, the search is based on the input variables
instead of all variables.
example_keys: If provided, keys to filter examples to.
vectorstore_kwargs: Extra arguments passed to similarity_search function
of the vectorstore.
vectorstore_cls_kwargs: optional kwargs containing url for vector store
Returns:
@ -157,6 +165,9 @@ class SemanticSimilarityExampleSelector(BaseExampleSelector, BaseModel):
k: Number of examples to select
input_keys: If provided, the search is based on the input variables
instead of all variables.
example_keys: If provided, keys to filter examples to.
vectorstore_kwargs: Extra arguments passed to similarity_search function
of the vectorstore.
vectorstore_cls_kwargs: optional kwargs containing url for vector store
Returns:
@ -175,7 +186,7 @@ class SemanticSimilarityExampleSelector(BaseExampleSelector, BaseModel):
)
class MaxMarginalRelevanceExampleSelector(SemanticSimilarityExampleSelector):
class MaxMarginalRelevanceExampleSelector(_VectorStoreExampleSelector):
"""ExampleSelector that selects examples based on Max Marginal Relevance.
This was shown to improve performance in this paper:
@ -186,21 +197,20 @@ class MaxMarginalRelevanceExampleSelector(SemanticSimilarityExampleSelector):
"""Number of examples to fetch to rerank."""
def select_examples(self, input_variables: Dict[str, str]) -> List[dict]:
"""Select which examples to use based on semantic similarity."""
# Get the docs with the highest similarity.
if self.input_keys:
input_variables = {key: input_variables[key] for key in self.input_keys}
query = " ".join(sorted_values(input_variables))
example_docs = self.vectorstore.max_marginal_relevance_search(
query, k=self.k, fetch_k=self.fetch_k
self._example_to_text(input_variables, self.input_keys),
k=self.k,
fetch_k=self.fetch_k,
)
# Get the examples from the metadata.
# This assumes that examples are stored in metadata.
examples = [dict(e.metadata) for e in example_docs]
# If example keys are provided, filter examples to those keys.
if self.example_keys:
examples = [{k: eg[k] for k in self.example_keys} for eg in examples]
return examples
return self._documents_to_examples(example_docs)
async def aselect_examples(self, input_variables: Dict[str, str]) -> List[dict]:
example_docs = await self.vectorstore.amax_marginal_relevance_search(
self._example_to_text(input_variables, self.input_keys),
k=self.k,
fetch_k=self.fetch_k,
)
return self._documents_to_examples(example_docs)
@classmethod
def from_examples(
@ -211,32 +221,86 @@ class MaxMarginalRelevanceExampleSelector(SemanticSimilarityExampleSelector):
k: int = 4,
input_keys: Optional[List[str]] = None,
fetch_k: int = 20,
example_keys: Optional[List[str]] = None,
vectorstore_kwargs: Optional[dict] = None,
**vectorstore_cls_kwargs: Any,
) -> MaxMarginalRelevanceExampleSelector:
"""Create k-shot example selector using example list and embeddings.
Reshuffles examples dynamically based on query similarity.
Reshuffles examples dynamically based on Max Marginal Relevance.
Args:
examples: List of examples to use in the prompt.
embeddings: An iniialized embedding API interface, e.g. OpenAIEmbeddings().
embeddings: An initialized embedding API interface, e.g. OpenAIEmbeddings().
vectorstore_cls: A vector store DB interface class, e.g. FAISS.
k: Number of examples to select
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
input_keys: If provided, the search is based on the input variables
instead of all variables.
example_keys: If provided, keys to filter examples to.
vectorstore_kwargs: Extra arguments passed to similarity_search function
of the vectorstore.
vectorstore_cls_kwargs: optional kwargs containing url for vector store
Returns:
The ExampleSelector instantiated, backed by a vector store.
"""
if input_keys:
string_examples = [
" ".join(sorted_values({k: eg[k] for k in input_keys}))
for eg in examples
]
else:
string_examples = [" ".join(sorted_values(eg)) for eg in examples]
string_examples = [cls._example_to_text(eg, input_keys) for eg in examples]
vectorstore = vectorstore_cls.from_texts(
string_examples, embeddings, metadatas=examples, **vectorstore_cls_kwargs
)
return cls(vectorstore=vectorstore, k=k, fetch_k=fetch_k, input_keys=input_keys)
return cls(
vectorstore=vectorstore,
k=k,
fetch_k=fetch_k,
input_keys=input_keys,
example_keys=example_keys,
vectorstore_kwargs=vectorstore_kwargs,
)
@classmethod
async def afrom_examples(
cls,
examples: List[dict],
embeddings: Embeddings,
vectorstore_cls: Type[VectorStore],
*,
k: int = 4,
input_keys: Optional[List[str]] = None,
fetch_k: int = 20,
example_keys: Optional[List[str]] = None,
vectorstore_kwargs: Optional[dict] = None,
**vectorstore_cls_kwargs: Any,
) -> MaxMarginalRelevanceExampleSelector:
"""Create k-shot example selector using example list and embeddings.
Reshuffles examples dynamically based on Max Marginal Relevance.
Args:
examples: List of examples to use in the prompt.
embeddings: An initialized embedding API interface, e.g. OpenAIEmbeddings().
vectorstore_cls: A vector store DB interface class, e.g. FAISS.
k: Number of examples to select
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
input_keys: If provided, the search is based on the input variables
instead of all variables.
example_keys: If provided, keys to filter examples to.
vectorstore_kwargs: Extra arguments passed to similarity_search function
of the vectorstore.
vectorstore_cls_kwargs: optional kwargs containing url for vector store
Returns:
The ExampleSelector instantiated, backed by a vector store.
"""
string_examples = [cls._example_to_text(eg, input_keys) for eg in examples]
vectorstore = await vectorstore_cls.afrom_texts(
string_examples, embeddings, metadatas=examples, **vectorstore_cls_kwargs
)
return cls(
vectorstore=vectorstore,
k=k,
fetch_k=fetch_k,
input_keys=input_keys,
example_keys=example_keys,
vectorstore_kwargs=vectorstore_kwargs,
)

View File

@ -462,7 +462,22 @@ class VectorStore(ABC):
lambda_mult: float = 0.5,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance."""
"""Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns:
List of Documents selected by maximal marginal relevance.
"""
# This is a temporary workaround to make the similarity search
# asynchronous. The proper solution is to make the similarity search

View File

@ -2,7 +2,10 @@ from typing import Any, Iterable, List, Optional, cast
from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings, FakeEmbeddings
from langchain_core.example_selectors import SemanticSimilarityExampleSelector
from langchain_core.example_selectors import (
MaxMarginalRelevanceExampleSelector,
SemanticSimilarityExampleSelector,
)
from langchain_core.vectorstores import VectorStore
@ -32,7 +35,24 @@ class DummyVectorStore(VectorStore):
self, query: str, k: int = 4, **kwargs: Any
) -> List[Document]:
return [
Document(page_content=query, metadata={"metadata": query, "other": "other"})
Document(
page_content=query, metadata={"query": query, "k": k, "other": "other"}
)
] * k
def max_marginal_relevance_search(
self,
query: str,
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
**kwargs: Any,
) -> List[Document]:
return [
Document(
page_content=query,
metadata={"query": query, "k": k, "fetch_k": fetch_k, "other": "other"},
)
] * k
@classmethod
@ -72,19 +92,19 @@ async def test_aadd_example() -> None:
def test_select_examples() -> None:
vector_store = DummyVectorStore()
selector = SemanticSimilarityExampleSelector(
vectorstore=vector_store, input_keys=["foo2"], example_keys=["metadata"], k=2
vectorstore=vector_store, input_keys=["foo2"], example_keys=["query", "k"], k=2
)
examples = selector.select_examples({"foo": "bar", "foo2": "bar2"})
assert examples == [{"metadata": "bar2"}] * 2
assert examples == [{"query": "bar2", "k": 2}] * 2
async def test_aselect_examples() -> None:
vector_store = DummyVectorStore()
selector = SemanticSimilarityExampleSelector(
vectorstore=vector_store, input_keys=["foo2"], example_keys=["metadata"], k=2
vectorstore=vector_store, input_keys=["foo2"], example_keys=["query", "k"], k=2
)
examples = await selector.aselect_examples({"foo": "bar", "foo2": "bar2"})
assert examples == [{"metadata": "bar2"}] * 2
assert examples == [{"query": "bar2", "k": 2}] * 2
def test_from_examples() -> None:
@ -137,3 +157,85 @@ async def test_afrom_examples() -> None:
assert vector_store.init_arg == "some_init_arg"
assert vector_store.texts == ["bar"]
assert vector_store.metadatas == [{"foo": "bar"}]
def test_mmr_select_examples() -> None:
vector_store = DummyVectorStore()
selector = MaxMarginalRelevanceExampleSelector(
vectorstore=vector_store,
input_keys=["foo2"],
example_keys=["query", "k", "fetch_k"],
k=2,
fetch_k=5,
)
examples = selector.select_examples({"foo": "bar", "foo2": "bar2"})
assert examples == [{"query": "bar2", "k": 2, "fetch_k": 5}] * 2
async def test_mmr_aselect_examples() -> None:
vector_store = DummyVectorStore()
selector = MaxMarginalRelevanceExampleSelector(
vectorstore=vector_store,
input_keys=["foo2"],
example_keys=["query", "k", "fetch_k"],
k=2,
fetch_k=5,
)
examples = await selector.aselect_examples({"foo": "bar", "foo2": "bar2"})
assert examples == [{"query": "bar2", "k": 2, "fetch_k": 5}] * 2
def test_mmr_from_examples() -> None:
examples = [{"foo": "bar"}]
embeddings = FakeEmbeddings(size=1)
selector = MaxMarginalRelevanceExampleSelector.from_examples(
examples=examples,
embeddings=embeddings,
vectorstore_cls=DummyVectorStore,
k=2,
fetch_k=5,
input_keys=["foo"],
example_keys=["some_example_key"],
vectorstore_kwargs={"vs_foo": "vs_bar"},
init_arg="some_init_arg",
)
assert selector.input_keys == ["foo"]
assert selector.example_keys == ["some_example_key"]
assert selector.k == 2
assert selector.fetch_k == 5
assert selector.vectorstore_kwargs == {"vs_foo": "vs_bar"}
assert isinstance(selector.vectorstore, DummyVectorStore)
vector_store = cast(DummyVectorStore, selector.vectorstore)
assert vector_store.embeddings is embeddings
assert vector_store.init_arg == "some_init_arg"
assert vector_store.texts == ["bar"]
assert vector_store.metadatas == [{"foo": "bar"}]
async def test_mmr_afrom_examples() -> None:
examples = [{"foo": "bar"}]
embeddings = FakeEmbeddings(size=1)
selector = await MaxMarginalRelevanceExampleSelector.afrom_examples(
examples=examples,
embeddings=embeddings,
vectorstore_cls=DummyVectorStore,
k=2,
fetch_k=5,
input_keys=["foo"],
example_keys=["some_example_key"],
vectorstore_kwargs={"vs_foo": "vs_bar"},
init_arg="some_init_arg",
)
assert selector.input_keys == ["foo"]
assert selector.example_keys == ["some_example_key"]
assert selector.k == 2
assert selector.fetch_k == 5
assert selector.vectorstore_kwargs == {"vs_foo": "vs_bar"}
assert isinstance(selector.vectorstore, DummyVectorStore)
vector_store = cast(DummyVectorStore, selector.vectorstore)
assert vector_store.embeddings is embeddings
assert vector_store.init_arg == "some_init_arg"
assert vector_store.texts == ["bar"]
assert vector_store.metadatas == [{"foo": "bar"}]