mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-19 05:13:46 +00:00
core[minor]: Add async methods to MaxMarginalRelevanceExampleSelector (#19639)
This commit is contained in:
parent
72c8b3127d
commit
33fa8cfcd0
@ -1,6 +1,7 @@
|
|||||||
"""Example selector that selects examples based on SemanticSimilarity."""
|
"""Example selector that selects examples based on SemanticSimilarity."""
|
||||||
from __future__ import annotations
|
from __future__ import annotations
|
||||||
|
|
||||||
|
from abc import ABC
|
||||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Type
|
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Type
|
||||||
|
|
||||||
from langchain_core.documents import Document
|
from langchain_core.documents import Document
|
||||||
@ -17,7 +18,7 @@ def sorted_values(values: Dict[str, str]) -> List[Any]:
|
|||||||
return [values[val] for val in sorted(values)]
|
return [values[val] for val in sorted(values)]
|
||||||
|
|
||||||
|
|
||||||
class SemanticSimilarityExampleSelector(BaseExampleSelector, BaseModel):
|
class _VectorStoreExampleSelector(BaseExampleSelector, BaseModel, ABC):
|
||||||
"""Example selector that selects examples based on SemanticSimilarity."""
|
"""Example selector that selects examples based on SemanticSimilarity."""
|
||||||
|
|
||||||
vectorstore: VectorStore
|
vectorstore: VectorStore
|
||||||
@ -70,6 +71,10 @@ class SemanticSimilarityExampleSelector(BaseExampleSelector, BaseModel):
|
|||||||
)
|
)
|
||||||
return ids[0]
|
return ids[0]
|
||||||
|
|
||||||
|
|
||||||
|
class SemanticSimilarityExampleSelector(_VectorStoreExampleSelector):
|
||||||
|
"""Example selector that selects examples based on SemanticSimilarity."""
|
||||||
|
|
||||||
def select_examples(self, input_variables: Dict[str, str]) -> List[dict]:
|
def select_examples(self, input_variables: Dict[str, str]) -> List[dict]:
|
||||||
"""Select which examples to use based on semantic similarity."""
|
"""Select which examples to use based on semantic similarity."""
|
||||||
# Get the docs with the highest similarity.
|
# Get the docs with the highest similarity.
|
||||||
@ -116,6 +121,9 @@ class SemanticSimilarityExampleSelector(BaseExampleSelector, BaseModel):
|
|||||||
k: Number of examples to select
|
k: Number of examples to select
|
||||||
input_keys: If provided, the search is based on the input variables
|
input_keys: If provided, the search is based on the input variables
|
||||||
instead of all variables.
|
instead of all variables.
|
||||||
|
example_keys: If provided, keys to filter examples to.
|
||||||
|
vectorstore_kwargs: Extra arguments passed to similarity_search function
|
||||||
|
of the vectorstore.
|
||||||
vectorstore_cls_kwargs: optional kwargs containing url for vector store
|
vectorstore_cls_kwargs: optional kwargs containing url for vector store
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
@ -157,6 +165,9 @@ class SemanticSimilarityExampleSelector(BaseExampleSelector, BaseModel):
|
|||||||
k: Number of examples to select
|
k: Number of examples to select
|
||||||
input_keys: If provided, the search is based on the input variables
|
input_keys: If provided, the search is based on the input variables
|
||||||
instead of all variables.
|
instead of all variables.
|
||||||
|
example_keys: If provided, keys to filter examples to.
|
||||||
|
vectorstore_kwargs: Extra arguments passed to similarity_search function
|
||||||
|
of the vectorstore.
|
||||||
vectorstore_cls_kwargs: optional kwargs containing url for vector store
|
vectorstore_cls_kwargs: optional kwargs containing url for vector store
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
@ -175,7 +186,7 @@ class SemanticSimilarityExampleSelector(BaseExampleSelector, BaseModel):
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
class MaxMarginalRelevanceExampleSelector(SemanticSimilarityExampleSelector):
|
class MaxMarginalRelevanceExampleSelector(_VectorStoreExampleSelector):
|
||||||
"""ExampleSelector that selects examples based on Max Marginal Relevance.
|
"""ExampleSelector that selects examples based on Max Marginal Relevance.
|
||||||
|
|
||||||
This was shown to improve performance in this paper:
|
This was shown to improve performance in this paper:
|
||||||
@ -186,21 +197,20 @@ class MaxMarginalRelevanceExampleSelector(SemanticSimilarityExampleSelector):
|
|||||||
"""Number of examples to fetch to rerank."""
|
"""Number of examples to fetch to rerank."""
|
||||||
|
|
||||||
def select_examples(self, input_variables: Dict[str, str]) -> List[dict]:
|
def select_examples(self, input_variables: Dict[str, str]) -> List[dict]:
|
||||||
"""Select which examples to use based on semantic similarity."""
|
|
||||||
# Get the docs with the highest similarity.
|
|
||||||
if self.input_keys:
|
|
||||||
input_variables = {key: input_variables[key] for key in self.input_keys}
|
|
||||||
query = " ".join(sorted_values(input_variables))
|
|
||||||
example_docs = self.vectorstore.max_marginal_relevance_search(
|
example_docs = self.vectorstore.max_marginal_relevance_search(
|
||||||
query, k=self.k, fetch_k=self.fetch_k
|
self._example_to_text(input_variables, self.input_keys),
|
||||||
|
k=self.k,
|
||||||
|
fetch_k=self.fetch_k,
|
||||||
)
|
)
|
||||||
# Get the examples from the metadata.
|
return self._documents_to_examples(example_docs)
|
||||||
# This assumes that examples are stored in metadata.
|
|
||||||
examples = [dict(e.metadata) for e in example_docs]
|
async def aselect_examples(self, input_variables: Dict[str, str]) -> List[dict]:
|
||||||
# If example keys are provided, filter examples to those keys.
|
example_docs = await self.vectorstore.amax_marginal_relevance_search(
|
||||||
if self.example_keys:
|
self._example_to_text(input_variables, self.input_keys),
|
||||||
examples = [{k: eg[k] for k in self.example_keys} for eg in examples]
|
k=self.k,
|
||||||
return examples
|
fetch_k=self.fetch_k,
|
||||||
|
)
|
||||||
|
return self._documents_to_examples(example_docs)
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def from_examples(
|
def from_examples(
|
||||||
@ -211,32 +221,86 @@ class MaxMarginalRelevanceExampleSelector(SemanticSimilarityExampleSelector):
|
|||||||
k: int = 4,
|
k: int = 4,
|
||||||
input_keys: Optional[List[str]] = None,
|
input_keys: Optional[List[str]] = None,
|
||||||
fetch_k: int = 20,
|
fetch_k: int = 20,
|
||||||
|
example_keys: Optional[List[str]] = None,
|
||||||
|
vectorstore_kwargs: Optional[dict] = None,
|
||||||
**vectorstore_cls_kwargs: Any,
|
**vectorstore_cls_kwargs: Any,
|
||||||
) -> MaxMarginalRelevanceExampleSelector:
|
) -> MaxMarginalRelevanceExampleSelector:
|
||||||
"""Create k-shot example selector using example list and embeddings.
|
"""Create k-shot example selector using example list and embeddings.
|
||||||
|
|
||||||
Reshuffles examples dynamically based on query similarity.
|
Reshuffles examples dynamically based on Max Marginal Relevance.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
examples: List of examples to use in the prompt.
|
examples: List of examples to use in the prompt.
|
||||||
embeddings: An iniialized embedding API interface, e.g. OpenAIEmbeddings().
|
embeddings: An initialized embedding API interface, e.g. OpenAIEmbeddings().
|
||||||
vectorstore_cls: A vector store DB interface class, e.g. FAISS.
|
vectorstore_cls: A vector store DB interface class, e.g. FAISS.
|
||||||
k: Number of examples to select
|
k: Number of examples to select
|
||||||
|
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
|
||||||
input_keys: If provided, the search is based on the input variables
|
input_keys: If provided, the search is based on the input variables
|
||||||
instead of all variables.
|
instead of all variables.
|
||||||
|
example_keys: If provided, keys to filter examples to.
|
||||||
|
vectorstore_kwargs: Extra arguments passed to similarity_search function
|
||||||
|
of the vectorstore.
|
||||||
vectorstore_cls_kwargs: optional kwargs containing url for vector store
|
vectorstore_cls_kwargs: optional kwargs containing url for vector store
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
The ExampleSelector instantiated, backed by a vector store.
|
The ExampleSelector instantiated, backed by a vector store.
|
||||||
"""
|
"""
|
||||||
if input_keys:
|
string_examples = [cls._example_to_text(eg, input_keys) for eg in examples]
|
||||||
string_examples = [
|
|
||||||
" ".join(sorted_values({k: eg[k] for k in input_keys}))
|
|
||||||
for eg in examples
|
|
||||||
]
|
|
||||||
else:
|
|
||||||
string_examples = [" ".join(sorted_values(eg)) for eg in examples]
|
|
||||||
vectorstore = vectorstore_cls.from_texts(
|
vectorstore = vectorstore_cls.from_texts(
|
||||||
string_examples, embeddings, metadatas=examples, **vectorstore_cls_kwargs
|
string_examples, embeddings, metadatas=examples, **vectorstore_cls_kwargs
|
||||||
)
|
)
|
||||||
return cls(vectorstore=vectorstore, k=k, fetch_k=fetch_k, input_keys=input_keys)
|
return cls(
|
||||||
|
vectorstore=vectorstore,
|
||||||
|
k=k,
|
||||||
|
fetch_k=fetch_k,
|
||||||
|
input_keys=input_keys,
|
||||||
|
example_keys=example_keys,
|
||||||
|
vectorstore_kwargs=vectorstore_kwargs,
|
||||||
|
)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
async def afrom_examples(
|
||||||
|
cls,
|
||||||
|
examples: List[dict],
|
||||||
|
embeddings: Embeddings,
|
||||||
|
vectorstore_cls: Type[VectorStore],
|
||||||
|
*,
|
||||||
|
k: int = 4,
|
||||||
|
input_keys: Optional[List[str]] = None,
|
||||||
|
fetch_k: int = 20,
|
||||||
|
example_keys: Optional[List[str]] = None,
|
||||||
|
vectorstore_kwargs: Optional[dict] = None,
|
||||||
|
**vectorstore_cls_kwargs: Any,
|
||||||
|
) -> MaxMarginalRelevanceExampleSelector:
|
||||||
|
"""Create k-shot example selector using example list and embeddings.
|
||||||
|
|
||||||
|
Reshuffles examples dynamically based on Max Marginal Relevance.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
examples: List of examples to use in the prompt.
|
||||||
|
embeddings: An initialized embedding API interface, e.g. OpenAIEmbeddings().
|
||||||
|
vectorstore_cls: A vector store DB interface class, e.g. FAISS.
|
||||||
|
k: Number of examples to select
|
||||||
|
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
|
||||||
|
input_keys: If provided, the search is based on the input variables
|
||||||
|
instead of all variables.
|
||||||
|
example_keys: If provided, keys to filter examples to.
|
||||||
|
vectorstore_kwargs: Extra arguments passed to similarity_search function
|
||||||
|
of the vectorstore.
|
||||||
|
vectorstore_cls_kwargs: optional kwargs containing url for vector store
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
The ExampleSelector instantiated, backed by a vector store.
|
||||||
|
"""
|
||||||
|
string_examples = [cls._example_to_text(eg, input_keys) for eg in examples]
|
||||||
|
vectorstore = await vectorstore_cls.afrom_texts(
|
||||||
|
string_examples, embeddings, metadatas=examples, **vectorstore_cls_kwargs
|
||||||
|
)
|
||||||
|
return cls(
|
||||||
|
vectorstore=vectorstore,
|
||||||
|
k=k,
|
||||||
|
fetch_k=fetch_k,
|
||||||
|
input_keys=input_keys,
|
||||||
|
example_keys=example_keys,
|
||||||
|
vectorstore_kwargs=vectorstore_kwargs,
|
||||||
|
)
|
||||||
|
@ -462,7 +462,22 @@ class VectorStore(ABC):
|
|||||||
lambda_mult: float = 0.5,
|
lambda_mult: float = 0.5,
|
||||||
**kwargs: Any,
|
**kwargs: Any,
|
||||||
) -> List[Document]:
|
) -> List[Document]:
|
||||||
"""Return docs selected using the maximal marginal relevance."""
|
"""Return docs selected using the maximal marginal relevance.
|
||||||
|
|
||||||
|
Maximal marginal relevance optimizes for similarity to query AND diversity
|
||||||
|
among selected documents.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
query: Text to look up documents similar to.
|
||||||
|
k: Number of Documents to return. Defaults to 4.
|
||||||
|
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
|
||||||
|
lambda_mult: Number between 0 and 1 that determines the degree
|
||||||
|
of diversity among the results with 0 corresponding
|
||||||
|
to maximum diversity and 1 to minimum diversity.
|
||||||
|
Defaults to 0.5.
|
||||||
|
Returns:
|
||||||
|
List of Documents selected by maximal marginal relevance.
|
||||||
|
"""
|
||||||
|
|
||||||
# This is a temporary workaround to make the similarity search
|
# This is a temporary workaround to make the similarity search
|
||||||
# asynchronous. The proper solution is to make the similarity search
|
# asynchronous. The proper solution is to make the similarity search
|
||||||
|
@ -2,7 +2,10 @@ from typing import Any, Iterable, List, Optional, cast
|
|||||||
|
|
||||||
from langchain_core.documents import Document
|
from langchain_core.documents import Document
|
||||||
from langchain_core.embeddings import Embeddings, FakeEmbeddings
|
from langchain_core.embeddings import Embeddings, FakeEmbeddings
|
||||||
from langchain_core.example_selectors import SemanticSimilarityExampleSelector
|
from langchain_core.example_selectors import (
|
||||||
|
MaxMarginalRelevanceExampleSelector,
|
||||||
|
SemanticSimilarityExampleSelector,
|
||||||
|
)
|
||||||
from langchain_core.vectorstores import VectorStore
|
from langchain_core.vectorstores import VectorStore
|
||||||
|
|
||||||
|
|
||||||
@ -32,7 +35,24 @@ class DummyVectorStore(VectorStore):
|
|||||||
self, query: str, k: int = 4, **kwargs: Any
|
self, query: str, k: int = 4, **kwargs: Any
|
||||||
) -> List[Document]:
|
) -> List[Document]:
|
||||||
return [
|
return [
|
||||||
Document(page_content=query, metadata={"metadata": query, "other": "other"})
|
Document(
|
||||||
|
page_content=query, metadata={"query": query, "k": k, "other": "other"}
|
||||||
|
)
|
||||||
|
] * k
|
||||||
|
|
||||||
|
def max_marginal_relevance_search(
|
||||||
|
self,
|
||||||
|
query: str,
|
||||||
|
k: int = 4,
|
||||||
|
fetch_k: int = 20,
|
||||||
|
lambda_mult: float = 0.5,
|
||||||
|
**kwargs: Any,
|
||||||
|
) -> List[Document]:
|
||||||
|
return [
|
||||||
|
Document(
|
||||||
|
page_content=query,
|
||||||
|
metadata={"query": query, "k": k, "fetch_k": fetch_k, "other": "other"},
|
||||||
|
)
|
||||||
] * k
|
] * k
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
@ -72,19 +92,19 @@ async def test_aadd_example() -> None:
|
|||||||
def test_select_examples() -> None:
|
def test_select_examples() -> None:
|
||||||
vector_store = DummyVectorStore()
|
vector_store = DummyVectorStore()
|
||||||
selector = SemanticSimilarityExampleSelector(
|
selector = SemanticSimilarityExampleSelector(
|
||||||
vectorstore=vector_store, input_keys=["foo2"], example_keys=["metadata"], k=2
|
vectorstore=vector_store, input_keys=["foo2"], example_keys=["query", "k"], k=2
|
||||||
)
|
)
|
||||||
examples = selector.select_examples({"foo": "bar", "foo2": "bar2"})
|
examples = selector.select_examples({"foo": "bar", "foo2": "bar2"})
|
||||||
assert examples == [{"metadata": "bar2"}] * 2
|
assert examples == [{"query": "bar2", "k": 2}] * 2
|
||||||
|
|
||||||
|
|
||||||
async def test_aselect_examples() -> None:
|
async def test_aselect_examples() -> None:
|
||||||
vector_store = DummyVectorStore()
|
vector_store = DummyVectorStore()
|
||||||
selector = SemanticSimilarityExampleSelector(
|
selector = SemanticSimilarityExampleSelector(
|
||||||
vectorstore=vector_store, input_keys=["foo2"], example_keys=["metadata"], k=2
|
vectorstore=vector_store, input_keys=["foo2"], example_keys=["query", "k"], k=2
|
||||||
)
|
)
|
||||||
examples = await selector.aselect_examples({"foo": "bar", "foo2": "bar2"})
|
examples = await selector.aselect_examples({"foo": "bar", "foo2": "bar2"})
|
||||||
assert examples == [{"metadata": "bar2"}] * 2
|
assert examples == [{"query": "bar2", "k": 2}] * 2
|
||||||
|
|
||||||
|
|
||||||
def test_from_examples() -> None:
|
def test_from_examples() -> None:
|
||||||
@ -137,3 +157,85 @@ async def test_afrom_examples() -> None:
|
|||||||
assert vector_store.init_arg == "some_init_arg"
|
assert vector_store.init_arg == "some_init_arg"
|
||||||
assert vector_store.texts == ["bar"]
|
assert vector_store.texts == ["bar"]
|
||||||
assert vector_store.metadatas == [{"foo": "bar"}]
|
assert vector_store.metadatas == [{"foo": "bar"}]
|
||||||
|
|
||||||
|
|
||||||
|
def test_mmr_select_examples() -> None:
|
||||||
|
vector_store = DummyVectorStore()
|
||||||
|
selector = MaxMarginalRelevanceExampleSelector(
|
||||||
|
vectorstore=vector_store,
|
||||||
|
input_keys=["foo2"],
|
||||||
|
example_keys=["query", "k", "fetch_k"],
|
||||||
|
k=2,
|
||||||
|
fetch_k=5,
|
||||||
|
)
|
||||||
|
examples = selector.select_examples({"foo": "bar", "foo2": "bar2"})
|
||||||
|
assert examples == [{"query": "bar2", "k": 2, "fetch_k": 5}] * 2
|
||||||
|
|
||||||
|
|
||||||
|
async def test_mmr_aselect_examples() -> None:
|
||||||
|
vector_store = DummyVectorStore()
|
||||||
|
selector = MaxMarginalRelevanceExampleSelector(
|
||||||
|
vectorstore=vector_store,
|
||||||
|
input_keys=["foo2"],
|
||||||
|
example_keys=["query", "k", "fetch_k"],
|
||||||
|
k=2,
|
||||||
|
fetch_k=5,
|
||||||
|
)
|
||||||
|
examples = await selector.aselect_examples({"foo": "bar", "foo2": "bar2"})
|
||||||
|
assert examples == [{"query": "bar2", "k": 2, "fetch_k": 5}] * 2
|
||||||
|
|
||||||
|
|
||||||
|
def test_mmr_from_examples() -> None:
|
||||||
|
examples = [{"foo": "bar"}]
|
||||||
|
embeddings = FakeEmbeddings(size=1)
|
||||||
|
selector = MaxMarginalRelevanceExampleSelector.from_examples(
|
||||||
|
examples=examples,
|
||||||
|
embeddings=embeddings,
|
||||||
|
vectorstore_cls=DummyVectorStore,
|
||||||
|
k=2,
|
||||||
|
fetch_k=5,
|
||||||
|
input_keys=["foo"],
|
||||||
|
example_keys=["some_example_key"],
|
||||||
|
vectorstore_kwargs={"vs_foo": "vs_bar"},
|
||||||
|
init_arg="some_init_arg",
|
||||||
|
)
|
||||||
|
assert selector.input_keys == ["foo"]
|
||||||
|
assert selector.example_keys == ["some_example_key"]
|
||||||
|
assert selector.k == 2
|
||||||
|
assert selector.fetch_k == 5
|
||||||
|
assert selector.vectorstore_kwargs == {"vs_foo": "vs_bar"}
|
||||||
|
|
||||||
|
assert isinstance(selector.vectorstore, DummyVectorStore)
|
||||||
|
vector_store = cast(DummyVectorStore, selector.vectorstore)
|
||||||
|
assert vector_store.embeddings is embeddings
|
||||||
|
assert vector_store.init_arg == "some_init_arg"
|
||||||
|
assert vector_store.texts == ["bar"]
|
||||||
|
assert vector_store.metadatas == [{"foo": "bar"}]
|
||||||
|
|
||||||
|
|
||||||
|
async def test_mmr_afrom_examples() -> None:
|
||||||
|
examples = [{"foo": "bar"}]
|
||||||
|
embeddings = FakeEmbeddings(size=1)
|
||||||
|
selector = await MaxMarginalRelevanceExampleSelector.afrom_examples(
|
||||||
|
examples=examples,
|
||||||
|
embeddings=embeddings,
|
||||||
|
vectorstore_cls=DummyVectorStore,
|
||||||
|
k=2,
|
||||||
|
fetch_k=5,
|
||||||
|
input_keys=["foo"],
|
||||||
|
example_keys=["some_example_key"],
|
||||||
|
vectorstore_kwargs={"vs_foo": "vs_bar"},
|
||||||
|
init_arg="some_init_arg",
|
||||||
|
)
|
||||||
|
assert selector.input_keys == ["foo"]
|
||||||
|
assert selector.example_keys == ["some_example_key"]
|
||||||
|
assert selector.k == 2
|
||||||
|
assert selector.fetch_k == 5
|
||||||
|
assert selector.vectorstore_kwargs == {"vs_foo": "vs_bar"}
|
||||||
|
|
||||||
|
assert isinstance(selector.vectorstore, DummyVectorStore)
|
||||||
|
vector_store = cast(DummyVectorStore, selector.vectorstore)
|
||||||
|
assert vector_store.embeddings is embeddings
|
||||||
|
assert vector_store.init_arg == "some_init_arg"
|
||||||
|
assert vector_store.texts == ["bar"]
|
||||||
|
assert vector_store.metadatas == [{"foo": "bar"}]
|
||||||
|
Loading…
Reference in New Issue
Block a user