mirror of
https://github.com/hwchase17/langchain.git
synced 2026-01-30 13:50:11 +00:00
Apply patch [skip ci]
This commit is contained in:
161
add_batch_docstring.py
Normal file
161
add_batch_docstring.py
Normal file
@@ -0,0 +1,161 @@
|
||||
#!/usr/bin/env python3
|
||||
"""Script to add batch API documentation to ChatOpenAI class docstring."""
|
||||
|
||||
import re
|
||||
|
||||
def add_batch_docstring():
|
||||
file_path = '/home/daytona/langchain/libs/partners/openai/langchain_openai/chat_models/base.py'
|
||||
|
||||
# Read the base.py file
|
||||
with open(file_path, 'r') as f:
|
||||
content = f.read()
|
||||
|
||||
# Find the location to insert the batch API documentation (before the closing docstring)
|
||||
pattern = r'(\s+)""" # noqa: E501'
|
||||
match = re.search(pattern, content)
|
||||
|
||||
if not match:
|
||||
print("Could not find insertion point")
|
||||
return False
|
||||
|
||||
indent = match.group(1)
|
||||
insert_pos = match.start()
|
||||
|
||||
# Define the batch API documentation to insert
|
||||
batch_docs = f'''
|
||||
.. dropdown:: Batch API for cost savings
|
||||
|
||||
.. versionadded:: 0.3.7
|
||||
|
||||
OpenAI's Batch API provides **50% cost savings** for non-real-time workloads by
|
||||
processing requests asynchronously. This is ideal for tasks like data processing,
|
||||
content generation, or evaluation that don't require immediate responses.
|
||||
|
||||
**Cost vs Latency Tradeoff:**
|
||||
|
||||
- **Standard API**: Immediate results, full pricing
|
||||
- **Batch API**: 50% cost savings, asynchronous processing (results available within 24 hours)
|
||||
|
||||
**Method 1: Direct batch management**
|
||||
|
||||
Use ``batch_create()`` and ``batch_retrieve()`` for full control over batch lifecycle:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_openai import ChatOpenAI
|
||||
from langchain_core.messages import HumanMessage
|
||||
|
||||
llm = ChatOpenAI(model="gpt-3.5-turbo")
|
||||
|
||||
# Prepare multiple message sequences for batch processing
|
||||
messages_list = [
|
||||
[HumanMessage(content="Translate 'hello' to French")],
|
||||
[HumanMessage(content="Translate 'goodbye' to Spanish")],
|
||||
[HumanMessage(content="What is the capital of Italy?")],
|
||||
]
|
||||
|
||||
# Create batch job (returns immediately with batch ID)
|
||||
batch_id = llm.batch_create(
|
||||
messages_list=messages_list,
|
||||
description="Translation and geography batch",
|
||||
metadata={{"project": "multilingual_qa", "user": "analyst_1"}},
|
||||
)
|
||||
print(f"Batch created: {{batch_id}}")
|
||||
|
||||
# Later, retrieve results (polls until completion)
|
||||
results = llm.batch_retrieve(
|
||||
batch_id=batch_id,
|
||||
poll_interval=60.0, # Check every minute
|
||||
timeout=3600.0, # 1 hour timeout
|
||||
)
|
||||
|
||||
# Process results
|
||||
for i, result in enumerate(results):
|
||||
response = result.generations[0].message.content
|
||||
print(f"Response {{i+1}}: {{response}}")
|
||||
|
||||
**Method 2: Enhanced batch() method**
|
||||
|
||||
Use the familiar ``batch()`` method with ``use_batch_api=True`` for seamless integration:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
# Standard batch processing (immediate, full cost)
|
||||
inputs = [
|
||||
[HumanMessage(content="What is 2+2?")],
|
||||
[HumanMessage(content="What is 3+3?")],
|
||||
]
|
||||
standard_results = llm.batch(inputs) # Default: use_batch_api=False
|
||||
|
||||
# Batch API processing (50% cost savings, polling)
|
||||
batch_results = llm.batch(
|
||||
inputs,
|
||||
use_batch_api=True, # Enable cost savings
|
||||
poll_interval=30.0, # Poll every 30 seconds
|
||||
timeout=1800.0, # 30 minute timeout
|
||||
)
|
||||
|
||||
**Batch creation with custom parameters:**
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
# Create batch with specific model parameters
|
||||
batch_id = llm.batch_create(
|
||||
messages_list=messages_list,
|
||||
description="Creative writing batch",
|
||||
metadata={{"task_type": "content_generation"}},
|
||||
temperature=0.8, # Higher creativity
|
||||
max_tokens=200, # Longer responses
|
||||
top_p=0.9, # Nucleus sampling
|
||||
)
|
||||
|
||||
**Error handling and monitoring:**
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_openai.chat_models.batch import BatchError
|
||||
|
||||
try:
|
||||
batch_id = llm.batch_create(messages_list)
|
||||
results = llm.batch_retrieve(batch_id, timeout=600.0)
|
||||
except BatchError as e:
|
||||
print(f"Batch processing failed: {{e}}")
|
||||
# Handle batch failure (retry, fallback to standard API, etc.)
|
||||
|
||||
**Best practices:**
|
||||
|
||||
- Use batch API for **non-urgent tasks** where 50% cost savings justify longer wait times
|
||||
- Set appropriate **timeouts** based on batch size (larger batches take longer)
|
||||
- Include **descriptive metadata** for tracking and debugging batch jobs
|
||||
- Consider **fallback strategies** for time-sensitive applications
|
||||
- Monitor batch status for **long-running jobs** to detect failures early
|
||||
|
||||
**When to use Batch API:**
|
||||
|
||||
✅ **Good for:**
|
||||
- Data processing and analysis
|
||||
- Content generation at scale
|
||||
- Model evaluation and testing
|
||||
- Batch translation or summarization
|
||||
- Non-interactive applications
|
||||
|
||||
❌ **Not suitable for:**
|
||||
- Real-time chat applications
|
||||
- Interactive user interfaces
|
||||
- Time-critical decision making
|
||||
- Applications requiring immediate responses
|
||||
|
||||
{indent}'''
|
||||
|
||||
# Insert the batch API documentation
|
||||
new_content = content[:insert_pos] + batch_docs + content[insert_pos:]
|
||||
|
||||
# Write back to file
|
||||
with open(file_path, 'w') as f:
|
||||
f.write(new_content)
|
||||
|
||||
print('Successfully added batch API documentation to ChatOpenAI class docstring')
|
||||
return True
|
||||
|
||||
if __name__ == "__main__":
|
||||
add_batch_docstring()
|
||||
Reference in New Issue
Block a user