community[patch] : Tidy up and update Clarifai SDK functions (#18314)

Description :
* Tidy up, add missing docstring and fix unused params
* Enable using session token
This commit is contained in:
Phat Vo 2024-03-08 10:47:44 +07:00 committed by GitHub
parent 93b87f2bfb
commit 3ecb903d49
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 117 additions and 128 deletions

View File

@ -1,9 +1,8 @@
import logging
from typing import Dict, List, Optional
from typing import Any, Dict, List, Optional
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel, Extra, root_validator
from langchain_core.utils import get_from_dict_or_env
from langchain_core.pydantic_v1 import BaseModel, Extra, Field, root_validator
logger = logging.getLogger(__name__)
@ -37,8 +36,11 @@ class ClarifaiEmbeddings(BaseModel, Embeddings):
"""Clarifai application id to use."""
user_id: Optional[str] = None
"""Clarifai user id to use."""
pat: Optional[str] = None
pat: Optional[str] = Field(default=None, exclude=True)
"""Clarifai personal access token to use."""
token: Optional[str] = Field(default=None, exclude=True)
"""Clarifai session token to use."""
model: Any = Field(default=None, exclude=True) #: :meta private:
api_base: str = "https://api.clarifai.com"
class Config:
@ -51,21 +53,32 @@ class ClarifaiEmbeddings(BaseModel, Embeddings):
"""Validate that we have all required info to access Clarifai
platform and python package exists in environment."""
values["pat"] = get_from_dict_or_env(values, "pat", "CLARIFAI_PAT")
try:
from clarifai.client.model import Model
except ImportError:
raise ImportError(
"Could not import clarifai python package. "
"Please install it with `pip install clarifai`."
)
user_id = values.get("user_id")
app_id = values.get("app_id")
model_id = values.get("model_id")
model_version_id = values.get("model_version_id")
model_url = values.get("model_url")
api_base = values.get("api_base")
pat = values.get("pat")
token = values.get("token")
if model_url is not None and model_id is not None:
raise ValueError("Please provide either model_url or model_id, not both.")
if model_url is None and model_id is None:
raise ValueError("Please provide one of model_url or model_id.")
if model_url is None and model_id is not None:
if user_id is None or app_id is None:
raise ValueError("Please provide a user_id and app_id.")
values["model"] = Model(
url=model_url,
app_id=app_id,
user_id=user_id,
model_version=dict(id=model_version_id),
pat=pat,
token=token,
model_id=model_id,
base_url=api_base,
)
return values
@ -78,27 +91,9 @@ class ClarifaiEmbeddings(BaseModel, Embeddings):
Returns:
List of embeddings, one for each text.
"""
try:
from clarifai.client.input import Inputs
from clarifai.client.model import Model
except ImportError:
raise ImportError(
"Could not import clarifai python package. "
"Please install it with `pip install clarifai`."
)
if self.pat is not None:
pat = self.pat
if self.model_url is not None:
_model_init = Model(url=self.model_url, pat=pat)
else:
_model_init = Model(
model_id=self.model_id,
user_id=self.user_id,
app_id=self.app_id,
pat=pat,
)
from clarifai.client.input import Inputs
input_obj = Inputs(pat=pat)
input_obj = Inputs.from_auth_helper(self.model.auth_helper)
batch_size = 32
embeddings = []
@ -109,7 +104,7 @@ class ClarifaiEmbeddings(BaseModel, Embeddings):
input_obj.get_text_input(input_id=str(id), raw_text=inp)
for id, inp in enumerate(batch)
]
predict_response = _model_init.predict(input_batch)
predict_response = self.model.predict(input_batch)
embeddings.extend(
[
list(output.data.embeddings[0].vector)
@ -131,27 +126,9 @@ class ClarifaiEmbeddings(BaseModel, Embeddings):
Returns:
Embeddings for the text.
"""
try:
from clarifai.client.model import Model
except ImportError:
raise ImportError(
"Could not import clarifai python package. "
"Please install it with `pip install clarifai`."
)
if self.pat is not None:
pat = self.pat
if self.model_url is not None:
_model_init = Model(url=self.model_url, pat=pat)
else:
_model_init = Model(
model_id=self.model_id,
user_id=self.user_id,
app_id=self.app_id,
pat=pat,
)
try:
predict_response = _model_init.predict_by_bytes(
predict_response = self.model.predict_by_bytes(
bytes(text, "utf-8"), input_type="text"
)
embeddings = [

View File

@ -4,8 +4,7 @@ from typing import Any, Dict, List, Optional
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM
from langchain_core.outputs import Generation, LLMResult
from langchain_core.pydantic_v1 import Extra, root_validator
from langchain_core.utils import get_from_dict_or_env
from langchain_core.pydantic_v1 import Extra, Field, root_validator
from langchain_community.llms.utils import enforce_stop_tokens
@ -42,8 +41,11 @@ class Clarifai(LLM):
"""Clarifai application id to use."""
user_id: Optional[str] = None
"""Clarifai user id to use."""
pat: Optional[str] = None
pat: Optional[str] = Field(default=None, exclude=True) #: :meta private:
"""Clarifai personal access token to use."""
token: Optional[str] = Field(default=None, exclude=True) #: :meta private:
"""Clarifai session token to use."""
model: Any = Field(default=None, exclude=True) #: :meta private:
api_base: str = "https://api.clarifai.com"
class Config:
@ -55,21 +57,32 @@ class Clarifai(LLM):
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that we have all required info to access Clarifai
platform and python package exists in environment."""
values["pat"] = get_from_dict_or_env(values, "pat", "CLARIFAI_PAT")
try:
from clarifai.client.model import Model
except ImportError:
raise ImportError(
"Could not import clarifai python package. "
"Please install it with `pip install clarifai`."
)
user_id = values.get("user_id")
app_id = values.get("app_id")
model_id = values.get("model_id")
model_version_id = values.get("model_version_id")
model_url = values.get("model_url")
api_base = values.get("api_base")
pat = values.get("pat")
token = values.get("token")
if model_url is not None and model_id is not None:
raise ValueError("Please provide either model_url or model_id, not both.")
if model_url is None and model_id is None:
raise ValueError("Please provide one of model_url or model_id.")
if model_url is None and model_id is not None:
if user_id is None or app_id is None:
raise ValueError("Please provide a user_id and app_id.")
values["model"] = Model(
url=model_url,
app_id=app_id,
user_id=user_id,
model_version=dict(id=model_version_id),
pat=pat,
token=token,
model_id=model_id,
base_url=api_base,
)
return values
@ -117,28 +130,10 @@ class Clarifai(LLM):
response = clarifai_llm("Tell me a joke.")
"""
# If version_id None, Defaults to the latest model version
try:
from clarifai.client.model import Model
except ImportError:
raise ImportError(
"Could not import clarifai python package. "
"Please install it with `pip install clarifai`."
)
if self.pat is not None:
pat = self.pat
if self.model_url is not None:
_model_init = Model(url=self.model_url, pat=pat)
else:
_model_init = Model(
model_id=self.model_id,
user_id=self.user_id,
app_id=self.app_id,
pat=pat,
)
try:
(inference_params := {}) if inference_params is None else inference_params
predict_response = _model_init.predict_by_bytes(
predict_response = self.model.predict_by_bytes(
bytes(prompt, "utf-8"),
input_type="text",
inference_params=inference_params,
@ -165,27 +160,15 @@ class Clarifai(LLM):
# TODO: add caching here.
try:
from clarifai.client.input import Inputs
from clarifai.client.model import Model
except ImportError:
raise ImportError(
"Could not import clarifai python package. "
"Please install it with `pip install clarifai`."
)
if self.pat is not None:
pat = self.pat
if self.model_url is not None:
_model_init = Model(url=self.model_url, pat=pat)
else:
_model_init = Model(
model_id=self.model_id,
user_id=self.user_id,
app_id=self.app_id,
pat=pat,
)
generations = []
batch_size = 32
input_obj = Inputs(pat=pat)
input_obj = Inputs.from_auth_helper(self.model.auth_helper)
try:
for i in range(0, len(prompts), batch_size):
batch = prompts[i : i + batch_size]
@ -196,7 +179,7 @@ class Clarifai(LLM):
(
inference_params := {}
) if inference_params is None else inference_params
predict_response = _model_init.predict(
predict_response = self.model.predict(
inputs=input_batch, inference_params=inference_params
)

View File

@ -36,8 +36,10 @@ class Clarifai(VectorStore):
self,
user_id: Optional[str] = None,
app_id: Optional[str] = None,
number_of_docs: Optional[int] = None,
number_of_docs: Optional[int] = 4,
pat: Optional[str] = None,
token: Optional[str] = None,
api_base: Optional[str] = "https://api.clarifai.com",
) -> None:
"""Initialize with Clarifai client.
@ -45,6 +47,7 @@ class Clarifai(VectorStore):
user_id (Optional[str], optional): User ID. Defaults to None.
app_id (Optional[str], optional): App ID. Defaults to None.
pat (Optional[str], optional): Personal access token. Defaults to None.
token (Optional[str], optional): Session token. Defaults to None.
number_of_docs (Optional[int], optional): Number of documents to return
during vector search. Defaults to None.
api_base (Optional[str], optional): API base. Defaults to None.
@ -52,21 +55,33 @@ class Clarifai(VectorStore):
Raises:
ValueError: If user ID, app ID or personal access token is not provided.
"""
self._user_id = user_id or os.environ.get("CLARIFAI_USER_ID")
self._app_id = app_id or os.environ.get("CLARIFAI_APP_ID")
if pat:
os.environ["CLARIFAI_PAT"] = pat
self._pat = os.environ.get("CLARIFAI_PAT")
if self._user_id is None or self._app_id is None or self._pat is None:
_user_id = user_id or os.environ.get("CLARIFAI_USER_ID")
_app_id = app_id or os.environ.get("CLARIFAI_APP_ID")
if _user_id is None or _app_id is None:
raise ValueError(
"Could not find CLARIFAI_USER_ID, CLARIFAI_APP_ID or\
CLARIFAI_PAT in your environment. "
"Please set those env variables with a valid user ID, \
app ID and personal access token \
from https://clarifai.com/settings/security."
"Could not find CLARIFAI_USER_ID "
"or CLARIFAI_APP_ID in your environment. "
"Please set those env variables with a valid user ID, app ID"
)
self._number_of_docs = number_of_docs
try:
from clarifai.client.search import Search
except ImportError as e:
raise ImportError(
"Could not import clarifai python package. "
"Please install it with `pip install clarifai`."
) from e
self._auth = Search(
user_id=_user_id,
app_id=_app_id,
top_k=number_of_docs,
pat=pat,
token=token,
base_url=api_base,
).auth_helper
def add_texts(
self,
texts: Iterable[str],
@ -109,7 +124,7 @@ class Clarifai(VectorStore):
ids
), "Number of text inputs and input ids should be the same."
input_obj = Inputs(app_id=self._app_id, user_id=self._user_id)
input_obj = Inputs.from_auth_helper(auth=self._auth)
batch_size = 32
input_job_ids = []
for idx in range(0, length, batch_size):
@ -149,7 +164,7 @@ class Clarifai(VectorStore):
def similarity_search_with_score(
self,
query: str,
k: int = 4,
k: Optional[int] = None,
filters: Optional[dict] = None,
**kwargs: Any,
) -> List[Tuple[Document, float]]:
@ -157,7 +172,8 @@ class Clarifai(VectorStore):
Args:
query (str): Query text to search for.
k (int): Number of results to return. Defaults to 4.
k (Optional[int]): Number of results to return. If not set,
it'll take _number_of_docs. Defaults to None.
filter (Optional[Dict[str, str]]): Filter by metadata.
Defaults to None.
@ -175,10 +191,9 @@ class Clarifai(VectorStore):
) from e
# Get number of docs to return
if self._number_of_docs is not None:
k = self._number_of_docs
top_k = k or self._number_of_docs
search_obj = Search(user_id=self._user_id, app_id=self._app_id, top_k=k)
search_obj = Search.from_auth_helper(auth=self._auth, top_k=top_k)
rank = [{"text_raw": query}]
# Add filter by metadata if provided.
if filters is not None:
@ -193,7 +208,7 @@ class Clarifai(VectorStore):
def hit_to_document(hit: resources_pb2.Hit) -> Tuple[Document, float]:
metadata = json_format.MessageToDict(hit.input.data.metadata)
h = {"Authorization": f"Key {self._pat}"}
h = dict(self._auth.metadata)
request = requests.get(hit.input.data.text.url, headers=h)
# override encoding by real educated guess as provided by chardet
@ -215,19 +230,20 @@ class Clarifai(VectorStore):
def similarity_search(
self,
query: str,
k: int = 4,
k: Optional[int] = None,
**kwargs: Any,
) -> List[Document]:
"""Run similarity search using Clarifai.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
k: Number of Documents to return.
If not set, it'll take _number_of_docs. Defaults to None.
Returns:
List of Documents most similar to the query and score for each
"""
docs_and_scores = self.similarity_search_with_score(query, **kwargs)
docs_and_scores = self.similarity_search_with_score(query, k=k, **kwargs)
return [doc for doc, _ in docs_and_scores]
@classmethod
@ -240,6 +256,7 @@ class Clarifai(VectorStore):
app_id: Optional[str] = None,
number_of_docs: Optional[int] = None,
pat: Optional[str] = None,
token: Optional[str] = None,
**kwargs: Any,
) -> Clarifai:
"""Create a Clarifai vectorstore from a list of texts.
@ -248,10 +265,14 @@ class Clarifai(VectorStore):
user_id (str): User ID.
app_id (str): App ID.
texts (List[str]): List of texts to add.
number_of_docs (Optional[int]): Number of documents to return
during vector search. Defaults to None.
metadatas (Optional[List[dict]]): Optional list of metadatas.
number_of_docs (Optional[int]): Number of documents
to return during vector search. Defaults to None.
pat (Optional[str], optional): Personal access token.
Defaults to None.
token (Optional[str], optional): Session token. Defaults to None.
metadatas (Optional[List[dict]]): Optional list
of metadatas. Defaults to None.
**kwargs: Additional keyword arguments to be passed to the Search.
Returns:
Clarifai: Clarifai vectorstore.
@ -261,6 +282,8 @@ class Clarifai(VectorStore):
app_id=app_id,
number_of_docs=number_of_docs,
pat=pat,
token=token,
**kwargs,
)
clarifai_vector_db.add_texts(texts=texts, metadatas=metadatas)
return clarifai_vector_db
@ -274,6 +297,7 @@ class Clarifai(VectorStore):
app_id: Optional[str] = None,
number_of_docs: Optional[int] = None,
pat: Optional[str] = None,
token: Optional[str] = None,
**kwargs: Any,
) -> Clarifai:
"""Create a Clarifai vectorstore from a list of documents.
@ -282,8 +306,11 @@ class Clarifai(VectorStore):
user_id (str): User ID.
app_id (str): App ID.
documents (List[Document]): List of documents to add.
number_of_docs (Optional[int]): Number of documents to return
during vector search. Defaults to None.
number_of_docs (Optional[int]): Number of documents
to return during vector search. Defaults to None.
pat (Optional[str], optional): Personal access token. Defaults to None.
token (Optional[str], optional): Session token. Defaults to None.
**kwargs: Additional keyword arguments to be passed to the Search.
Returns:
Clarifai: Clarifai vectorstore.
@ -297,4 +324,6 @@ class Clarifai(VectorStore):
number_of_docs=number_of_docs,
pat=pat,
metadatas=metadatas,
token=token,
**kwargs,
)