mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-21 06:14:37 +00:00
Pinecone upsert parallelization (#9859)
Issue: closes #9855 * consolidates `from_texts` and `add_texts` functions for pinecone upsert * adds two types of batching (one for embeddings and one for index upsert) * adds thread pool size when instantiating pinecone index
This commit is contained in:
parent
16a27ab244
commit
4765c09703
@ -3,15 +3,19 @@ from __future__ import annotations
|
||||
import logging
|
||||
import uuid
|
||||
import warnings
|
||||
from typing import Any, Callable, Iterable, List, Optional, Tuple, Union
|
||||
from typing import TYPE_CHECKING, Any, Callable, Iterable, List, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
|
||||
from langchain.docstore.document import Document
|
||||
from langchain.embeddings.base import Embeddings
|
||||
from langchain.utils.iter import batch_iterate
|
||||
from langchain.vectorstores.base import VectorStore
|
||||
from langchain.vectorstores.utils import DistanceStrategy, maximal_marginal_relevance
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from pinecone import Index
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@ -51,16 +55,16 @@ class Pinecone(VectorStore):
|
||||
"Could not import pinecone python package. "
|
||||
"Please install it with `pip install pinecone-client`."
|
||||
)
|
||||
if not isinstance(index, pinecone.index.Index):
|
||||
raise ValueError(
|
||||
f"client should be an instance of pinecone.index.Index, "
|
||||
f"got {type(index)}"
|
||||
)
|
||||
if not isinstance(embedding, Embeddings):
|
||||
warnings.warn(
|
||||
"Passing in `embedding` as a Callable is deprecated. Please pass in an"
|
||||
" Embeddings object instead."
|
||||
)
|
||||
if not isinstance(index, pinecone.index.Index):
|
||||
raise ValueError(
|
||||
f"client should be an instance of pinecone.index.Index, "
|
||||
f"got {type(index)}"
|
||||
)
|
||||
self._index = index
|
||||
self._embedding = embedding
|
||||
self._text_key = text_key
|
||||
@ -93,15 +97,22 @@ class Pinecone(VectorStore):
|
||||
ids: Optional[List[str]] = None,
|
||||
namespace: Optional[str] = None,
|
||||
batch_size: int = 32,
|
||||
embedding_chunk_size: int = 1000,
|
||||
**kwargs: Any,
|
||||
) -> List[str]:
|
||||
"""Run more texts through the embeddings and add to the vectorstore.
|
||||
|
||||
Upsert optimization is done by chunking the embeddings and upserting them.
|
||||
This is done to avoid memory issues and optimize using HTTP based embeddings.
|
||||
For OpenAI embeddings, use pool_threads>4 when constructing the pinecone.Index,
|
||||
embedding_chunk_size>1000 and batch_size~64 for best performance.
|
||||
Args:
|
||||
texts: Iterable of strings to add to the vectorstore.
|
||||
metadatas: Optional list of metadatas associated with the texts.
|
||||
ids: Optional list of ids to associate with the texts.
|
||||
namespace: Optional pinecone namespace to add the texts to.
|
||||
batch_size: Batch size to use when adding the texts to the vectorstore.
|
||||
embedding_chunk_size: Chunk size to use when embedding the texts.
|
||||
|
||||
Returns:
|
||||
List of ids from adding the texts into the vectorstore.
|
||||
@ -109,18 +120,34 @@ class Pinecone(VectorStore):
|
||||
"""
|
||||
if namespace is None:
|
||||
namespace = self._namespace
|
||||
# Embed and create the documents
|
||||
docs = []
|
||||
|
||||
texts = list(texts)
|
||||
ids = ids or [str(uuid.uuid4()) for _ in texts]
|
||||
embeddings = self._embed_documents(texts)
|
||||
for i, (text, embedding) in enumerate(zip(texts, embeddings)):
|
||||
metadata = metadatas[i] if metadatas else {}
|
||||
metadatas = metadatas or [{} for _ in texts]
|
||||
for metadata, text in zip(metadatas, texts):
|
||||
metadata[self._text_key] = text
|
||||
docs.append((ids[i], embedding, metadata))
|
||||
# upsert to Pinecone
|
||||
self._index.upsert(
|
||||
vectors=docs, namespace=namespace, batch_size=batch_size, **kwargs
|
||||
)
|
||||
|
||||
# For loops to avoid memory issues and optimize when using HTTP based embeddings
|
||||
# The first loop runs the embeddings, it benefits when using OpenAI embeddings
|
||||
# The second loops runs the pinecone upsert asynchoronously.
|
||||
for i in range(0, len(texts), embedding_chunk_size):
|
||||
chunk_texts = texts[i : i + embedding_chunk_size]
|
||||
chunk_ids = ids[i : i + embedding_chunk_size]
|
||||
chunk_metadatas = metadatas[i : i + embedding_chunk_size]
|
||||
embeddings = self._embed_documents(chunk_texts)
|
||||
async_res = [
|
||||
self._index.upsert(
|
||||
vectors=batch,
|
||||
namespace=namespace,
|
||||
async_req=True,
|
||||
**kwargs,
|
||||
)
|
||||
for batch in batch_iterate(
|
||||
batch_size, zip(chunk_ids, embeddings, chunk_metadatas)
|
||||
)
|
||||
]
|
||||
[res.get() for res in async_res]
|
||||
|
||||
return ids
|
||||
|
||||
def similarity_search_with_score(
|
||||
@ -302,6 +329,45 @@ class Pinecone(VectorStore):
|
||||
embedding, k, fetch_k, lambda_mult, filter, namespace
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def get_pinecone_index(
|
||||
cls,
|
||||
index_name: Optional[str],
|
||||
pool_threads: int = 4,
|
||||
) -> Index:
|
||||
"""Return a Pinecone Index instance.
|
||||
|
||||
Args:
|
||||
index_name: Name of the index to use.
|
||||
pool_threads: Number of threads to use for index upsert.
|
||||
Returns:
|
||||
Pinecone Index instance."""
|
||||
|
||||
try:
|
||||
import pinecone
|
||||
except ImportError:
|
||||
raise ValueError(
|
||||
"Could not import pinecone python package. "
|
||||
"Please install it with `pip install pinecone-client`."
|
||||
)
|
||||
|
||||
indexes = pinecone.list_indexes() # checks if provided index exists
|
||||
|
||||
if index_name in indexes:
|
||||
index = pinecone.Index(index_name, pool_threads=pool_threads)
|
||||
elif len(indexes) == 0:
|
||||
raise ValueError(
|
||||
"No active indexes found in your Pinecone project, "
|
||||
"are you sure you're using the right Pinecone API key and Environment? "
|
||||
"Please double check your Pinecone dashboard."
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Index '{index_name}' not found in your Pinecone project. "
|
||||
f"Did you mean one of the following indexes: {', '.join(indexes)}"
|
||||
)
|
||||
return index
|
||||
|
||||
@classmethod
|
||||
def from_texts(
|
||||
cls,
|
||||
@ -311,9 +377,11 @@ class Pinecone(VectorStore):
|
||||
ids: Optional[List[str]] = None,
|
||||
batch_size: int = 32,
|
||||
text_key: str = "text",
|
||||
index_name: Optional[str] = None,
|
||||
namespace: Optional[str] = None,
|
||||
index_name: Optional[str] = None,
|
||||
upsert_kwargs: Optional[dict] = None,
|
||||
pool_threads: int = 4,
|
||||
embeddings_chunk_size: int = 1000,
|
||||
**kwargs: Any,
|
||||
) -> Pinecone:
|
||||
"""Construct Pinecone wrapper from raw documents.
|
||||
@ -324,6 +392,7 @@ class Pinecone(VectorStore):
|
||||
|
||||
This is intended to be a quick way to get started.
|
||||
|
||||
The `pool_threads` affects the speed of the upsert operations.
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
@ -341,54 +410,19 @@ class Pinecone(VectorStore):
|
||||
index_name="langchain-demo"
|
||||
)
|
||||
"""
|
||||
try:
|
||||
import pinecone
|
||||
except ImportError:
|
||||
raise ValueError(
|
||||
"Could not import pinecone python package. "
|
||||
"Please install it with `pip install pinecone-client`."
|
||||
)
|
||||
pinecone_index = cls.get_pinecone_index(index_name, pool_threads)
|
||||
pinecone = cls(pinecone_index, embedding, text_key, namespace, **kwargs)
|
||||
|
||||
indexes = pinecone.list_indexes() # checks if provided index exists
|
||||
|
||||
if index_name in indexes:
|
||||
index = pinecone.Index(index_name)
|
||||
elif len(indexes) == 0:
|
||||
raise ValueError(
|
||||
"No active indexes found in your Pinecone project, "
|
||||
"are you sure you're using the right API key and environment?"
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Index '{index_name}' not found in your Pinecone project. "
|
||||
f"Did you mean one of the following indexes: {', '.join(indexes)}"
|
||||
)
|
||||
|
||||
for i in range(0, len(texts), batch_size):
|
||||
# set end position of batch
|
||||
i_end = min(i + batch_size, len(texts))
|
||||
# get batch of texts and ids
|
||||
lines_batch = texts[i:i_end]
|
||||
# create ids if not provided
|
||||
if ids:
|
||||
ids_batch = ids[i:i_end]
|
||||
else:
|
||||
ids_batch = [str(uuid.uuid4()) for n in range(i, i_end)]
|
||||
# create embeddings
|
||||
embeds = embedding.embed_documents(lines_batch)
|
||||
# prep metadata and upsert batch
|
||||
if metadatas:
|
||||
metadata = metadatas[i:i_end]
|
||||
else:
|
||||
metadata = [{} for _ in range(i, i_end)]
|
||||
for j, line in enumerate(lines_batch):
|
||||
metadata[j][text_key] = line
|
||||
to_upsert = zip(ids_batch, embeds, metadata)
|
||||
|
||||
# upsert to Pinecone
|
||||
_upsert_kwargs = upsert_kwargs or {}
|
||||
index.upsert(vectors=list(to_upsert), namespace=namespace, **_upsert_kwargs)
|
||||
return cls(index, embedding, text_key, namespace, **kwargs)
|
||||
pinecone.add_texts(
|
||||
texts,
|
||||
metadatas=metadatas,
|
||||
ids=ids,
|
||||
namespace=namespace,
|
||||
batch_size=batch_size,
|
||||
embedding_chunk_size=embeddings_chunk_size,
|
||||
**(upsert_kwargs or {}),
|
||||
)
|
||||
return pinecone
|
||||
|
||||
@classmethod
|
||||
def from_existing_index(
|
||||
@ -397,17 +431,11 @@ class Pinecone(VectorStore):
|
||||
embedding: Embeddings,
|
||||
text_key: str = "text",
|
||||
namespace: Optional[str] = None,
|
||||
pool_threads: int = 4,
|
||||
) -> Pinecone:
|
||||
"""Load pinecone vectorstore from index name."""
|
||||
try:
|
||||
import pinecone
|
||||
except ImportError:
|
||||
raise ValueError(
|
||||
"Could not import pinecone python package. "
|
||||
"Please install it with `pip install pinecone-client`."
|
||||
)
|
||||
|
||||
return cls(pinecone.Index(index_name), embedding, text_key, namespace)
|
||||
pinecone_index = cls.get_pinecone_index(index_name, pool_threads)
|
||||
return cls(pinecone_index, embedding, text_key, namespace)
|
||||
|
||||
def delete(
|
||||
self,
|
||||
|
@ -231,3 +231,57 @@ class TestPinecone:
|
||||
assert all(
|
||||
(1 >= score or np.isclose(score, 1)) and score >= 0 for _, score in output
|
||||
)
|
||||
|
||||
@pytest.mark.skipif(reason="slow to run for benchmark")
|
||||
@pytest.mark.parametrize(
|
||||
"pool_threads,batch_size,embeddings_chunk_size,data_multiplier",
|
||||
[
|
||||
(
|
||||
1,
|
||||
32,
|
||||
32,
|
||||
1000,
|
||||
), # simulate single threaded with embeddings_chunk_size = batch_size = 32
|
||||
(
|
||||
1,
|
||||
32,
|
||||
1000,
|
||||
1000,
|
||||
), # simulate single threaded with embeddings_chunk_size = 1000
|
||||
(
|
||||
4,
|
||||
32,
|
||||
1000,
|
||||
1000,
|
||||
), # simulate 4 threaded with embeddings_chunk_size = 1000
|
||||
(20, 64, 5000, 1000),
|
||||
], # simulate 20 threaded with embeddings_chunk_size = 5000
|
||||
)
|
||||
def test_from_texts_with_metadatas_benchmark(
|
||||
self,
|
||||
pool_threads: int,
|
||||
batch_size: int,
|
||||
embeddings_chunk_size: int,
|
||||
data_multiplier: int,
|
||||
documents: List[Document],
|
||||
embedding_openai: OpenAIEmbeddings,
|
||||
) -> None:
|
||||
"""Test end to end construction and search."""
|
||||
|
||||
texts = [document.page_content for document in documents] * data_multiplier
|
||||
uuids = [uuid.uuid4().hex for _ in range(len(texts))]
|
||||
metadatas = [{"page": i} for i in range(len(texts))]
|
||||
docsearch = Pinecone.from_texts(
|
||||
texts,
|
||||
embedding_openai,
|
||||
ids=uuids,
|
||||
metadatas=metadatas,
|
||||
index_name=index_name,
|
||||
namespace=namespace_name,
|
||||
pool_threads=pool_threads,
|
||||
batch_size=batch_size,
|
||||
embeddings_chunk_size=embeddings_chunk_size,
|
||||
)
|
||||
|
||||
query = "What did the president say about Ketanji Brown Jackson"
|
||||
_ = docsearch.similarity_search(query, k=1, namespace=namespace_name)
|
||||
|
@ -40,4 +40,4 @@ ignore-regex = '.*(Stati Uniti|Tense=Pres).*'
|
||||
# whats is a typo but used frequently in queries so kept as is
|
||||
# aapply - async apply
|
||||
# unsecure - typo but part of API, decided to not bother for now
|
||||
ignore-words-list = 'momento,collison,ned,foor,reworkd,parth,whats,aapply,mysogyny,unsecure,damon,crate'
|
||||
ignore-words-list = 'momento,collison,ned,foor,reworkd,parth,whats,aapply,mysogyny,unsecure,damon,crate'
|
||||
|
Loading…
Reference in New Issue
Block a user