mirror of
https://github.com/hwchase17/langchain.git
synced 2025-07-31 08:32:32 +00:00
fix: max_marginal_relevance_search and docs in Dingo (#9244)
This commit is contained in:
parent
664ff28cba
commit
4b505060bd
@ -23,7 +23,9 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!pip install dingodb"
|
||||
"!pip install dingodb\n",
|
||||
"or install latest:\n",
|
||||
"!pip install git+https://git@github.com/dingodb/pydingo.git"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -107,7 +109,7 @@
|
||||
"dingo_client = DingoDB(user=\"\", password=\"\", host=[\"127.0.0.1:13000\"])\n",
|
||||
"# First, check if our index already exists. If it doesn't, we create it\n",
|
||||
"if index_name not in dingo_client.get_index():\n",
|
||||
" # we create a new index\n",
|
||||
" # we create a new index, modify to your own\n",
|
||||
" dingo_client.create_index(\n",
|
||||
" index_name=index_name,\n",
|
||||
" dimension=1536,\n",
|
||||
@ -150,7 +152,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(docs[0][1])"
|
||||
"print(docs[0].page_content)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -170,9 +172,9 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"vectorstore = Dingo(client, embeddings.embed_query, \"text\")\n",
|
||||
"vectorstore = Dingo(embeddings, \"text\", client=dingo_client, index_name=index_name)\n",
|
||||
"\n",
|
||||
"vectorstore.add_texts(\"More text!\")"
|
||||
"vectorstore.add_texts([\"More text!\"])"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -112,9 +112,11 @@ class Dingo(VectorStore):
|
||||
# upsert to Dingo
|
||||
for i in range(0, len(list(texts)), batch_size):
|
||||
j = i + batch_size
|
||||
self._client.vector_add(
|
||||
add_res = self._client.vector_add(
|
||||
self._index_name, metadatas_list[i:j], embeds[i:j], ids[i:j]
|
||||
)
|
||||
if not add_res:
|
||||
raise Exception("vector add fail")
|
||||
|
||||
return ids
|
||||
|
||||
@ -205,20 +207,26 @@ class Dingo(VectorStore):
|
||||
List of Documents selected by maximal marginal relevance.
|
||||
"""
|
||||
results = self._client.vector_search(
|
||||
self._index_name, [embedding], search_params, k
|
||||
self._index_name, [embedding], search_params=search_params, top_k=k
|
||||
)
|
||||
|
||||
mmr_selected = maximal_marginal_relevance(
|
||||
np.array([embedding], dtype=np.float32),
|
||||
[item["floatValues"] for item in results[0]["vectorWithDistances"]],
|
||||
[
|
||||
item["vector"]["floatValues"]
|
||||
for item in results[0]["vectorWithDistances"]
|
||||
],
|
||||
k=k,
|
||||
lambda_mult=lambda_mult,
|
||||
)
|
||||
selected = [
|
||||
results[0]["vectorWithDistances"][i]["metaData"] for i in mmr_selected
|
||||
]
|
||||
selected = []
|
||||
for i in mmr_selected:
|
||||
meta_data = {}
|
||||
for k, v in results[0]["vectorWithDistances"][i]["scalarData"].items():
|
||||
meta_data.update({str(k): v["fields"][0]["data"]})
|
||||
selected.append(meta_data)
|
||||
return [
|
||||
Document(page_content=metadata.pop((self._text_key)), metadata=metadata)
|
||||
Document(page_content=metadata.pop(self._text_key), metadata=metadata)
|
||||
for metadata in selected
|
||||
]
|
||||
|
||||
@ -328,9 +336,11 @@ class Dingo(VectorStore):
|
||||
# upsert to Dingo
|
||||
for i in range(0, len(list(texts)), batch_size):
|
||||
j = i + batch_size
|
||||
dingo_client.vector_add(
|
||||
add_res = dingo_client.vector_add(
|
||||
index_name, metadatas_list[i:j], embeds[i:j], ids[i:j]
|
||||
)
|
||||
if not add_res:
|
||||
raise Exception("vector add fail")
|
||||
return cls(embedding, text_key, client=dingo_client, index_name=index_name)
|
||||
|
||||
def delete(
|
||||
|
Loading…
Reference in New Issue
Block a user