partner: Upstage quick documentation update (#20869)

* Updating the provider docs page. 
The RAG example was meant to be moved to cookbook, but was merged by
mistake.

* Fix bug in Groundedness Check

---------

Co-authored-by: JuHyung-Son <sonju0427@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
This commit is contained in:
Sean 2024-04-25 09:36:54 -07:00 committed by GitHub
parent ffad3985a1
commit 540f384197
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 35 additions and 84 deletions

View File

@ -53,7 +53,7 @@
"| Chat | Build assistants using Solar Mini Chat | `from langchain_upstage import ChatUpstage` | [Go](../../chat/upstage) |\n",
"| Text Embedding | Embed strings to vectors | `from langchain_upstage import UpstageEmbeddings` | [Go](../../text_embedding/upstage) |\n",
"| Groundedness Check | Verify groundedness of assistant's response | `from langchain_upstage import GroundednessCheck` | [Go](../../tools/upstage_groundedness_check) |\n",
"| Layout Analysis | Serialize documents with tables and figures | `from langchain_upstage import UpstageLayoutAnalysis` | [Go](../../document_loaders/upstage) |\n",
"| Layout Analysis | Serialize documents with tables and figures | `from langchain_upstage import UpstageLayoutAnalysisLoader` | [Go](../../document_loaders/upstage) |\n",
"\n",
"See [documentations](https://developers.upstage.ai/) for more details about the features."
]
@ -172,10 +172,10 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_upstage import UpstageLayoutAnalysis\n",
"from langchain_upstage import UpstageLayoutAnalysisLoader\n",
"\n",
"file_path = \"/PATH/TO/YOUR/FILE.pdf\"\n",
"layzer = UpstageLayoutAnalysis(file_path, split=\"page\")\n",
"layzer = UpstageLayoutAnalysisLoader(file_path, split=\"page\")\n",
"\n",
"# For improved memory efficiency, consider using the lazy_load method to load documents page by page.\n",
"docs = layzer.load() # or layzer.lazy_load()\n",
@ -183,81 +183,6 @@
"for doc in docs[:3]:\n",
" print(doc)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Retrieval-Augmented Generation"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from typing import List\n",
"\n",
"from langchain_community.vectorstores import DocArrayInMemorySearch\n",
"from langchain_core.documents.base import Document\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_core.runnables import RunnablePassthrough\n",
"from langchain_core.runnables.base import RunnableSerializable\n",
"from langchain_upstage import (\n",
" ChatUpstage,\n",
" GroundednessCheck,\n",
" UpstageEmbeddings,\n",
" UpstageLayoutAnalysis,\n",
")\n",
"\n",
"model = ChatUpstage()\n",
"\n",
"file_path = (\n",
" \"/PATH/TO/YOUR/FILE.pdf\" # e.g. \"libs/partners/upstage/tests/examples/solar.pdf\"\n",
")\n",
"loader = UpstageLayoutAnalysis(file_path=file_path, split=\"element\")\n",
"docs = loader.load()\n",
"\n",
"vectorstore = DocArrayInMemorySearch.from_documents(docs, embedding=UpstageEmbeddings())\n",
"retriever = vectorstore.as_retriever()\n",
"\n",
"template = \"\"\"Answer the question based only on the following context:\n",
"{context}\n",
"\n",
"Question: {question}\n",
"\"\"\"\n",
"prompt = ChatPromptTemplate.from_template(template)\n",
"output_parser = StrOutputParser()\n",
"\n",
"question = \"ASK ANY QUESTION HERE.\" # e.g. \"How many parameters in SOLAR model?\"\n",
"\n",
"retrieved_docs = retriever.get_relevant_documents(question)\n",
"\n",
"groundedness_check = GroundednessCheck()\n",
"groundedness = \"\"\n",
"while groundedness != \"grounded\":\n",
" chain: RunnableSerializable = RunnablePassthrough() | prompt | model | output_parser\n",
"\n",
" result = chain.invoke(\n",
" {\n",
" \"context\": retrieved_docs,\n",
" \"question\": question,\n",
" }\n",
" )\n",
"\n",
" # convert all Documents to string\n",
" def formatDocumentsAsString(docs: List[Document]) -> str:\n",
" return \"\\n\".join([doc.page_content for doc in docs])\n",
"\n",
" groundedness = groundedness_check.run(\n",
" {\n",
" \"context\": formatDocumentsAsString(retrieved_docs),\n",
" \"assistant_message\": result,\n",
" }\n",
" ).content"
]
}
],
"metadata": {

View File

@ -1,5 +1,5 @@
import os
from typing import Literal, Optional, Type, Union
from typing import Any, Literal, Optional, Type, Union
from langchain_core.callbacks import (
AsyncCallbackManagerForToolRun,
@ -8,6 +8,7 @@ from langchain_core.callbacks import (
from langchain_core.messages import AIMessage, HumanMessage
from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr
from langchain_core.tools import BaseTool
from langchain_core.utils import convert_to_secret_str
from langchain_upstage import ChatUpstage
@ -51,11 +52,14 @@ class GroundednessCheck(BaseTool):
args_schema: Type[BaseModel] = GroundednessCheckInput
def __init__(self, upstage_api_key: Optional[SecretStr] = None):
def __init__(self, **kwargs: Any) -> None:
upstage_api_key = kwargs.get("upstage_api_key", None)
if not upstage_api_key:
upstage_api_key = kwargs.get("api_key", None)
if not upstage_api_key:
upstage_api_key = SecretStr(os.getenv("UPSTAGE_API_KEY", ""))
else:
upstage_api_key = upstage_api_key
upstage_api_key = convert_to_secret_str(upstage_api_key)
if (
not upstage_api_key
or not upstage_api_key.get_secret_value()
@ -76,7 +80,9 @@ class GroundednessCheck(BaseTool):
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> Union[str, Literal["grounded", "notGrounded", "notSure"]]:
"""Use the tool."""
response = self.api_wrapper.invoke([HumanMessage(context), AIMessage(query)])
response = self.api_wrapper.invoke(
[HumanMessage(context), AIMessage(query)], stream=False
)
return str(response.content)
async def _arun(
@ -86,6 +92,6 @@ class GroundednessCheck(BaseTool):
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> Union[str, Literal["grounded", "notGrounded", "notSure"]]:
response = await self.api_wrapper.ainvoke(
[HumanMessage(context), AIMessage(query)]
[HumanMessage(context), AIMessage(query)], stream=False
)
return str(response.content)

View File

@ -1,3 +1,8 @@
import os
import openai
import pytest
from langchain_upstage import GroundednessCheck
@ -8,6 +13,19 @@ def test_langchain_upstage_groundedness_check() -> None:
assert output in ["grounded", "notGrounded", "notSure"]
api_key = os.environ.get("UPSTAGE_API_KEY", None)
tool = GroundednessCheck(upstage_api_key=api_key)
output = tool.run({"context": "foo bar", "query": "bar foo"})
assert output in ["grounded", "notGrounded", "notSure"]
def test_langchain_upstage_groundedness_check_fail_with_wrong_api_key() -> None:
tool = GroundednessCheck(api_key="wrong-key")
with pytest.raises(openai.AuthenticationError):
tool.run({"context": "foo bar", "query": "bar foo"})
async def test_langchain_upstage_groundedness_check_async() -> None:
"""Test Upstage Groundedness Check asynchronous."""

View File

@ -8,3 +8,5 @@ os.environ["UPSTAGE_API_KEY"] = "foo"
def test_initialization() -> None:
"""Test embedding model initialization."""
GroundednessCheck()
GroundednessCheck(upstage_api_key="key")
GroundednessCheck(api_key="key")