mirror of
https://github.com/hwchase17/langchain.git
synced 2025-07-31 08:32:32 +00:00
community[patch]: Add embedding instruction to HuggingFaceBgeEmbeddings (#18017)
- **Description:** Add embedding instruction to HuggingFaceBgeEmbeddings, so that it can be compatible with nomic and other models that need embedding instruction. --------- Co-authored-by: Tao Wu <tao.wu@rwth-aachen.de> Co-authored-by: Bagatur <baskaryan@gmail.com>
This commit is contained in:
parent
9c218d0154
commit
5b5b37a999
@ -189,11 +189,12 @@ class HuggingFaceInstructEmbeddings(BaseModel, Embeddings):
|
||||
|
||||
|
||||
class HuggingFaceBgeEmbeddings(BaseModel, Embeddings):
|
||||
"""HuggingFace BGE sentence_transformers embedding models.
|
||||
"""HuggingFace sentence_transformers embedding models.
|
||||
|
||||
To use, you should have the ``sentence_transformers`` python package installed.
|
||||
To use Nomic, make sure the version of ``sentence_transformers`` >= 2.3.0.
|
||||
|
||||
Example:
|
||||
Bge Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
|
||||
@ -206,6 +207,24 @@ class HuggingFaceBgeEmbeddings(BaseModel, Embeddings):
|
||||
model_kwargs=model_kwargs,
|
||||
encode_kwargs=encode_kwargs
|
||||
)
|
||||
Nomic Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
|
||||
|
||||
model_name = "nomic-ai/nomic-embed-text-v1"
|
||||
model_kwargs = {
|
||||
'device': 'cpu',
|
||||
'trust_remote_code':True
|
||||
}
|
||||
encode_kwargs = {'normalize_embeddings': True}
|
||||
hf = HuggingFaceBgeEmbeddings(
|
||||
model_name=model_name,
|
||||
model_kwargs=model_kwargs,
|
||||
encode_kwargs=encode_kwargs,
|
||||
query_instruction = "search_query:",
|
||||
embed_instruction = "search_document:"
|
||||
)
|
||||
"""
|
||||
|
||||
client: Any #: :meta private:
|
||||
@ -220,6 +239,8 @@ class HuggingFaceBgeEmbeddings(BaseModel, Embeddings):
|
||||
"""Keyword arguments to pass when calling the `encode` method of the model."""
|
||||
query_instruction: str = DEFAULT_QUERY_BGE_INSTRUCTION_EN
|
||||
"""Instruction to use for embedding query."""
|
||||
embed_instruction: str = ""
|
||||
"""Instruction to use for embedding document."""
|
||||
|
||||
def __init__(self, **kwargs: Any):
|
||||
"""Initialize the sentence_transformer."""
|
||||
@ -253,7 +274,7 @@ class HuggingFaceBgeEmbeddings(BaseModel, Embeddings):
|
||||
Returns:
|
||||
List of embeddings, one for each text.
|
||||
"""
|
||||
texts = [t.replace("\n", " ") for t in texts]
|
||||
texts = [self.embed_instruction + t.replace("\n", " ") for t in texts]
|
||||
embeddings = self.client.encode(texts, **self.encode_kwargs)
|
||||
return embeddings.tolist()
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user