mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-12 12:59:07 +00:00
docs: Updated pinecone.mdx in the integration providers (#31123)
Updated pinecone.mdx in the integration providers Added short description and examples for SparseVector store and SparseEmbeddings
This commit is contained in:
committed by
GitHub
parent
6b6750967a
commit
5dde64583e
@@ -29,11 +29,44 @@ For a more detailed walkthrough of the Pinecone vectorstore, see [this notebook]
|
||||
|
||||
### Sparse Vector store
|
||||
|
||||
LangChain's `PineconeSparseVectorStore` enables sparse retrieval using Pinecone's sparse English model. It maps text to sparse vectors and supports adding documents and similarity search.
|
||||
|
||||
```python
|
||||
from langchain_pinecone import PineconeSparseVectorStore
|
||||
|
||||
# Initialize sparse vector store
|
||||
vector_store = PineconeSparseVectorStore(
|
||||
index=my_index,
|
||||
embedding_model="pinecone-sparse-english-v0"
|
||||
)
|
||||
# Add documents
|
||||
vector_store.add_documents(documents)
|
||||
# Query
|
||||
results = vector_store.similarity_search("your query", k=3)
|
||||
```
|
||||
|
||||
For a more detailed walkthrough of the Pinecone vectorstore, see [this notebook](/docs/integrations/vectorstores/pinecone_sparse)
|
||||
For a more detailed walkthrough, see the [Pinecone Sparse Vector Store notebook](/docs/integrations/vectorstores/pinecone_sparse).
|
||||
|
||||
### Sparse Embedding
|
||||
|
||||
LangChain's `PineconeSparseEmbeddings` provides sparse embedding generation using Pinecone's `pinecone-sparse-english-v0` model.
|
||||
|
||||
```python
|
||||
from langchain_pinecone.embeddings import PineconeSparseEmbeddings
|
||||
|
||||
# Initialize sparse embeddings
|
||||
sparse_embeddings = PineconeSparseEmbeddings(
|
||||
model="pinecone-sparse-english-v0"
|
||||
)
|
||||
# Embed a single query (returns SparseValues)
|
||||
query_embedding = sparse_embeddings.embed_query("sample text")
|
||||
|
||||
# Embed multiple documents (returns list of SparseValues)
|
||||
docs = ["Document 1 content", "Document 2 content"]
|
||||
doc_embeddings = sparse_embeddings.embed_documents(docs)
|
||||
```
|
||||
|
||||
For more detailed usage, see the [Pinecone Sparse Embeddings notebook](/docs/integrations/vectorstores/pinecone_sparse).
|
||||
|
||||
|
||||
## Retrievers
|
||||
|
Reference in New Issue
Block a user