docs: Updated pinecone.mdx in the integration providers (#31123)

Updated pinecone.mdx in the integration providers

Added short description and examples for SparseVector store and
SparseEmbeddings
This commit is contained in:
Simonas Jakubonis
2025-05-06 19:58:32 +03:00
committed by GitHub
parent 6b6750967a
commit 5dde64583e

View File

@@ -29,11 +29,44 @@ For a more detailed walkthrough of the Pinecone vectorstore, see [this notebook]
### Sparse Vector store
LangChain's `PineconeSparseVectorStore` enables sparse retrieval using Pinecone's sparse English model. It maps text to sparse vectors and supports adding documents and similarity search.
```python
from langchain_pinecone import PineconeSparseVectorStore
# Initialize sparse vector store
vector_store = PineconeSparseVectorStore(
index=my_index,
embedding_model="pinecone-sparse-english-v0"
)
# Add documents
vector_store.add_documents(documents)
# Query
results = vector_store.similarity_search("your query", k=3)
```
For a more detailed walkthrough of the Pinecone vectorstore, see [this notebook](/docs/integrations/vectorstores/pinecone_sparse)
For a more detailed walkthrough, see the [Pinecone Sparse Vector Store notebook](/docs/integrations/vectorstores/pinecone_sparse).
### Sparse Embedding
LangChain's `PineconeSparseEmbeddings` provides sparse embedding generation using Pinecone's `pinecone-sparse-english-v0` model.
```python
from langchain_pinecone.embeddings import PineconeSparseEmbeddings
# Initialize sparse embeddings
sparse_embeddings = PineconeSparseEmbeddings(
model="pinecone-sparse-english-v0"
)
# Embed a single query (returns SparseValues)
query_embedding = sparse_embeddings.embed_query("sample text")
# Embed multiple documents (returns list of SparseValues)
docs = ["Document 1 content", "Document 2 content"]
doc_embeddings = sparse_embeddings.embed_documents(docs)
```
For more detailed usage, see the [Pinecone Sparse Embeddings notebook](/docs/integrations/vectorstores/pinecone_sparse).
## Retrievers