openai[major]: switch to pydantic v2

This commit is contained in:
Bagatur
2024-09-03 16:33:35 -07:00
parent 9a9ab65030
commit 615f8b0d47
13 changed files with 228 additions and 225 deletions

View File

@@ -31,7 +31,7 @@ from langchain_core.output_parsers.openai_tools import (
PydanticToolsParser,
)
from langchain_core.outputs import ChatResult
from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr, root_validator
from pydantic import BaseModel, Field, SecretStr, model_validator
from langchain_core.runnables import Runnable, RunnableMap, RunnablePassthrough
from langchain_core.tools import BaseTool
from langchain_core.utils import from_env, secret_from_env
@@ -39,6 +39,8 @@ from langchain_core.utils.function_calling import convert_to_openai_tool
from langchain_core.utils.pydantic import is_basemodel_subclass
from langchain_openai.chat_models.base import BaseChatOpenAI
from typing_extensions import Self
logger = logging.getLogger(__name__)
@@ -494,7 +496,7 @@ class AzureChatOpenAI(BaseChatOpenAI):
default_factory=from_env("OPENAI_API_VERSION", default=None),
)
"""Automatically inferred from env var `OPENAI_API_VERSION` if not provided."""
# Check OPENAI_KEY for backwards compatibility.
# Check OPENAI_API_KEY for backwards compatibility.
# TODO: Remove OPENAI_API_KEY support to avoid possible conflict when using
# other forms of azure credentials.
openai_api_key: Optional[SecretStr] = Field(
@@ -565,31 +567,31 @@ class AzureChatOpenAI(BaseChatOpenAI):
def is_lc_serializable(cls) -> bool:
return True
@root_validator(pre=False, skip_on_failure=True)
def validate_environment(cls, values: Dict) -> Dict:
@model_validator(mode="after")
def validate_environment(self) -> Self:
"""Validate that api key and python package exists in environment."""
if values["n"] < 1:
if self.n < 1:
raise ValueError("n must be at least 1.")
if values["n"] > 1 and values["streaming"]:
if self.n > 1 and self.streaming:
raise ValueError("n must be 1 when streaming.")
# Check OPENAI_ORGANIZATION for backwards compatibility.
values["openai_organization"] = (
values["openai_organization"]
self.openai_organization = (
self.openai_organization
or os.getenv("OPENAI_ORG_ID")
or os.getenv("OPENAI_ORGANIZATION")
)
# For backwards compatibility. Before openai v1, no distinction was made
# between azure_endpoint and base_url (openai_api_base).
openai_api_base = values["openai_api_base"]
if openai_api_base and values["validate_base_url"]:
openai_api_base = self.openai_api_base
if openai_api_base and self.validate_base_url:
if "/openai" not in openai_api_base:
raise ValueError(
"As of openai>=1.0.0, Azure endpoints should be specified via "
"the `azure_endpoint` param not `openai_api_base` "
"(or alias `base_url`)."
)
if values["deployment_name"]:
if self.deployment_name:
raise ValueError(
"As of openai>=1.0.0, if `azure_deployment` (or alias "
"`deployment_name`) is specified then "
@@ -603,38 +605,38 @@ class AzureChatOpenAI(BaseChatOpenAI):
'base_url="https://xxx.openai.azure.com/openai/deployments/my-deployment"'
)
client_params = {
"api_version": values["openai_api_version"],
"azure_endpoint": values["azure_endpoint"],
"azure_deployment": values["deployment_name"],
"api_version": self.openai_api_version,
"azure_endpoint": self.azure_endpoint,
"azure_deployment": self.deployment_name,
"api_key": (
values["openai_api_key"].get_secret_value()
if values["openai_api_key"]
self.openai_api_key.get_secret_value()
if self.openai_api_key
else None
),
"azure_ad_token": (
values["azure_ad_token"].get_secret_value()
if values["azure_ad_token"]
self.azure_ad_token.get_secret_value()
if self.azure_ad_token
else None
),
"azure_ad_token_provider": values["azure_ad_token_provider"],
"organization": values["openai_organization"],
"base_url": values["openai_api_base"],
"timeout": values["request_timeout"],
"max_retries": values["max_retries"],
"default_headers": values["default_headers"],
"default_query": values["default_query"],
"azure_ad_token_provider": self.azure_ad_token_provider,
"organization": self.openai_organization,
"base_url": self.openai_api_base,
"timeout": self.request_timeout,
"max_retries": self.max_retries,
"default_headers": self.default_headers,
"default_query": self.default_query,
}
if not values.get("client"):
sync_specific = {"http_client": values["http_client"]}
values["root_client"] = openai.AzureOpenAI(**client_params, **sync_specific)
values["client"] = values["root_client"].chat.completions
if not values.get("async_client"):
async_specific = {"http_client": values["http_async_client"]}
values["root_async_client"] = openai.AsyncAzureOpenAI(
if not (self.client or None):
sync_specific = {"http_client": self.http_client}
self.root_client = openai.AzureOpenAI(**client_params, **sync_specific)
self.client = self.root_client.chat.completions
if not (self.async_client or None):
async_specific = {"http_client": self.http_async_client}
self.root_async_client = openai.AsyncAzureOpenAI(
**client_params, **async_specific
)
values["async_client"] = values["root_async_client"].chat.completions
return values
self.async_client = self.root_async_client.chat.completions
return self
def bind_tools(
self,

View File

@@ -73,15 +73,11 @@ from langchain_core.output_parsers.openai_tools import (
parse_tool_call,
)
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr, root_validator
from pydantic import BaseModel, Field, model_validator, SecretStr
from langchain_core.runnables import Runnable, RunnableMap, RunnablePassthrough, chain
from langchain_core.runnables.config import run_in_executor
from langchain_core.tools import BaseTool
from langchain_core.utils import (
convert_to_secret_str,
get_from_dict_or_env,
get_pydantic_field_names,
)
from langchain_core.utils import get_from_dict_or_env, get_pydantic_field_names
from langchain_core.utils.function_calling import (
convert_to_openai_function,
convert_to_openai_tool,
@@ -91,7 +87,10 @@ from langchain_core.utils.pydantic import (
TypeBaseModel,
is_basemodel_subclass,
)
from langchain_core.utils.utils import build_extra_kwargs
from langchain_core.utils.utils import build_extra_kwargs, from_env, secret_from_env
from pydantic import ConfigDict
from typing_extensions import Self
logger = logging.getLogger(__name__)
@@ -361,15 +360,19 @@ class BaseChatOpenAI(BaseChatModel):
"""What sampling temperature to use."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Holds any model parameters valid for `create` call not explicitly specified."""
openai_api_key: Optional[SecretStr] = Field(default=None, alias="api_key")
"""Automatically inferred from env var `OPENAI_API_KEY` if not provided."""
openai_api_key: Optional[SecretStr] = Field(
alias="api_key",
default_factory=secret_from_env("OPENAI_API_KEY", default=None),
)
openai_api_base: Optional[str] = Field(default=None, alias="base_url")
"""Base URL path for API requests, leave blank if not using a proxy or service
emulator."""
openai_organization: Optional[str] = Field(default=None, alias="organization")
"""Automatically inferred from env var `OPENAI_ORG_ID` if not provided."""
# to support explicit proxy for OpenAI
openai_proxy: Optional[str] = None
openai_proxy: Optional[str] = Field(
default_factory=from_env("OPENAI_PROXY", default=None)
)
request_timeout: Union[float, Tuple[float, float], Any, None] = Field(
default=None, alias="timeout"
)
@@ -428,13 +431,11 @@ class BaseChatOpenAI(BaseChatModel):
include_response_headers: bool = False
"""Whether to include response headers in the output message response_metadata."""
class Config:
"""Configuration for this pydantic object."""
model_config = ConfigDict(populate_by_name=True,)
allow_population_by_field_name = True
@root_validator(pre=True)
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
@model_validator(mode="before")
@classmethod
def build_extra(cls, values: Dict[str, Any]) -> Any:
"""Build extra kwargs from additional params that were passed in."""
all_required_field_names = get_pydantic_field_names(cls)
extra = values.get("model_kwargs", {})
@@ -443,56 +444,49 @@ class BaseChatOpenAI(BaseChatModel):
)
return values
@root_validator(pre=False, skip_on_failure=True, allow_reuse=True)
def validate_environment(cls, values: Dict) -> Dict:
@model_validator(mode="after")
def validate_environment(self) -> Self:
"""Validate that api key and python package exists in environment."""
if values["n"] < 1:
if self.n < 1:
raise ValueError("n must be at least 1.")
if values["n"] > 1 and values["streaming"]:
if self.n > 1 and self.streaming:
raise ValueError("n must be 1 when streaming.")
values["openai_api_key"] = convert_to_secret_str(
get_from_dict_or_env(values, "openai_api_key", "OPENAI_API_KEY")
)
# Check OPENAI_ORGANIZATION for backwards compatibility.
values["openai_organization"] = (
values["openai_organization"]
self.openai_organization = (
self.openai_organization
or os.getenv("OPENAI_ORG_ID")
or os.getenv("OPENAI_ORGANIZATION")
)
values["openai_api_base"] = values["openai_api_base"] or os.getenv(
self.openai_api_base = self.openai_api_base or os.getenv(
"OPENAI_API_BASE"
)
values["openai_proxy"] = get_from_dict_or_env(
values, "openai_proxy", "OPENAI_PROXY", default=""
)
client_params = {
"api_key": (
values["openai_api_key"].get_secret_value()
if values["openai_api_key"]
self.openai_api_key.get_secret_value()
if self.openai_api_key
else None
),
"organization": values["openai_organization"],
"base_url": values["openai_api_base"],
"timeout": values["request_timeout"],
"max_retries": values["max_retries"],
"default_headers": values["default_headers"],
"default_query": values["default_query"],
"organization": self.openai_organization,
"base_url": self.openai_api_base,
"timeout": self.request_timeout,
"max_retries": self.max_retries,
"default_headers": self.default_headers,
"default_query": self.default_query,
}
if values["openai_proxy"] and (
values["http_client"] or values["http_async_client"]
if self.openai_proxy and (
self.http_client or self.http_async_client
):
openai_proxy = values["openai_proxy"]
http_client = values["http_client"]
http_async_client = values["http_async_client"]
openai_proxy = self.openai_proxy
http_client = self.http_client
http_async_client = self.http_async_client
raise ValueError(
"Cannot specify 'openai_proxy' if one of "
"'http_client'/'http_async_client' is already specified. Received:\n"
f"{openai_proxy=}\n{http_client=}\n{http_async_client=}"
)
if not values.get("client"):
if values["openai_proxy"] and not values["http_client"]:
if not (self.client or None):
if self.openai_proxy and not self.http_client:
try:
import httpx
except ImportError as e:
@@ -500,12 +494,12 @@ class BaseChatOpenAI(BaseChatModel):
"Could not import httpx python package. "
"Please install it with `pip install httpx`."
) from e
values["http_client"] = httpx.Client(proxy=values["openai_proxy"])
sync_specific = {"http_client": values["http_client"]}
values["root_client"] = openai.OpenAI(**client_params, **sync_specific)
values["client"] = values["root_client"].chat.completions
if not values.get("async_client"):
if values["openai_proxy"] and not values["http_async_client"]:
self.http_client = httpx.Client(proxy=self.openai_proxy)
sync_specific = {"http_client": self.http_client}
self.root_client = openai.OpenAI(**client_params, **sync_specific)
self.client = self.root_client.chat.completions
if not (self.async_client or None):
if self.openai_proxy and not self.http_async_client:
try:
import httpx
except ImportError as e:
@@ -513,15 +507,15 @@ class BaseChatOpenAI(BaseChatModel):
"Could not import httpx python package. "
"Please install it with `pip install httpx`."
) from e
values["http_async_client"] = httpx.AsyncClient(
proxy=values["openai_proxy"]
self.http_async_client = httpx.AsyncClient(
proxy=self.openai_proxy
)
async_specific = {"http_client": values["http_async_client"]}
values["root_async_client"] = openai.AsyncOpenAI(
async_specific = {"http_client": self.http_async_client}
self.root_async_client = openai.AsyncOpenAI(
**client_params, **async_specific
)
values["async_client"] = values["root_async_client"].chat.completions
return values
self.async_client = self.root_async_client.chat.completions
return self
@property
def _default_params(self) -> Dict[str, Any]:

View File

@@ -5,10 +5,12 @@ from __future__ import annotations
from typing import Callable, Dict, Optional, Union
import openai
from langchain_core.pydantic_v1 import Field, SecretStr, root_validator
from pydantic import Field, SecretStr, root_validator, model_validator
from langchain_core.utils import from_env, secret_from_env
from langchain_openai.embeddings.base import OpenAIEmbeddings
from typing_extensions import Self
class AzureOpenAIEmbeddings(OpenAIEmbeddings):
@@ -153,21 +155,21 @@ class AzureOpenAIEmbeddings(OpenAIEmbeddings):
chunk_size: int = 2048
"""Maximum number of texts to embed in each batch"""
@root_validator(pre=False, skip_on_failure=True)
def validate_environment(cls, values: Dict) -> Dict:
@model_validator(mode="after")
def validate_environment(self) -> Self:
"""Validate that api key and python package exists in environment."""
# For backwards compatibility. Before openai v1, no distinction was made
# between azure_endpoint and base_url (openai_api_base).
openai_api_base = values["openai_api_base"]
if openai_api_base and values["validate_base_url"]:
openai_api_base = self.openai_api_base
if openai_api_base and self.validate_base_url:
if "/openai" not in openai_api_base:
values["openai_api_base"] += "/openai"
self.openai_api_base += "/openai"
raise ValueError(
"As of openai>=1.0.0, Azure endpoints should be specified via "
"the `azure_endpoint` param not `openai_api_base` "
"(or alias `base_url`). "
)
if values["deployment"]:
if self.deployment:
raise ValueError(
"As of openai>=1.0.0, if `deployment` (or alias "
"`azure_deployment`) is specified then "
@@ -176,38 +178,38 @@ class AzureOpenAIEmbeddings(OpenAIEmbeddings):
"and `azure_endpoint`."
)
client_params = {
"api_version": values["openai_api_version"],
"azure_endpoint": values["azure_endpoint"],
"azure_deployment": values["deployment"],
"api_version": self.openai_api_version,
"azure_endpoint": self.azure_endpoint,
"azure_deployment": self.deployment,
"api_key": (
values["openai_api_key"].get_secret_value()
if values["openai_api_key"]
self.openai_api_key.get_secret_value()
if self.openai_api_key
else None
),
"azure_ad_token": (
values["azure_ad_token"].get_secret_value()
if values["azure_ad_token"]
self.azure_ad_token.get_secret_value()
if self.azure_ad_token
else None
),
"azure_ad_token_provider": values["azure_ad_token_provider"],
"organization": values["openai_organization"],
"base_url": values["openai_api_base"],
"timeout": values["request_timeout"],
"max_retries": values["max_retries"],
"default_headers": values["default_headers"],
"default_query": values["default_query"],
"azure_ad_token_provider": self.azure_ad_token_provider,
"organization": self.openai_organization,
"base_url": self.openai_api_base,
"timeout": self.request_timeout,
"max_retries": self.max_retries,
"default_headers": self.default_headers,
"default_query": self.default_query,
}
if not values.get("client"):
sync_specific = {"http_client": values["http_client"]}
values["client"] = openai.AzureOpenAI(
if not (self.client or None):
sync_specific = {"http_client": self.http_client}
self.client = openai.AzureOpenAI(
**client_params, **sync_specific
).embeddings
if not values.get("async_client"):
async_specific = {"http_client": values["http_async_client"]}
values["async_client"] = openai.AsyncAzureOpenAI(
if not (self.async_client or None):
async_specific = {"http_client": self.http_async_client}
self.async_client = openai.AsyncAzureOpenAI(
**client_params, **async_specific
).embeddings
return values
return self
@property
def _llm_type(self) -> str:

View File

@@ -20,8 +20,12 @@ from typing import (
import openai
import tiktoken
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr, root_validator
from pydantic import BaseModel, Field, SecretStr, root_validator, model_validator
from langchain_core.utils import from_env, get_pydantic_field_names, secret_from_env
from pydantic import ConfigDict
from typing_extensions import Self
logger = logging.getLogger(__name__)
@@ -263,14 +267,11 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
"""Whether to check the token length of inputs and automatically split inputs
longer than embedding_ctx_length."""
class Config:
"""Configuration for this pydantic object."""
model_config = ConfigDict(extra="forbid",populate_by_name=True,)
extra = "forbid"
allow_population_by_field_name = True
@root_validator(pre=True)
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
@model_validator(mode="before")
@classmethod
def build_extra(cls, values: Dict[str, Any]) -> Any:
"""Build extra kwargs from additional params that were passed in."""
all_required_field_names = get_pydantic_field_names(cls)
extra = values.get("model_kwargs", {})
@@ -295,41 +296,41 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
values["model_kwargs"] = extra
return values
@root_validator(pre=False, skip_on_failure=True, allow_reuse=True)
def validate_environment(cls, values: Dict) -> Dict:
@model_validator(mode="after")
def validate_environment(self) -> Self:
"""Validate that api key and python package exists in environment."""
if values["openai_api_type"] in ("azure", "azure_ad", "azuread"):
if self.openai_api_type in ("azure", "azure_ad", "azuread"):
raise ValueError(
"If you are using Azure, "
"please use the `AzureOpenAIEmbeddings` class."
)
client_params = {
"api_key": (
values["openai_api_key"].get_secret_value()
if values["openai_api_key"]
self.openai_api_key.get_secret_value()
if self.openai_api_key
else None
),
"organization": values["openai_organization"],
"base_url": values["openai_api_base"],
"timeout": values["request_timeout"],
"max_retries": values["max_retries"],
"default_headers": values["default_headers"],
"default_query": values["default_query"],
"organization": self.openai_organization,
"base_url": self.openai_api_base,
"timeout": self.request_timeout,
"max_retries": self.max_retries,
"default_headers": self.default_headers,
"default_query": self.default_query,
}
if values["openai_proxy"] and (
values["http_client"] or values["http_async_client"]
if self.openai_proxy and (
self.http_client or self.http_async_client
):
openai_proxy = values["openai_proxy"]
http_client = values["http_client"]
http_async_client = values["http_async_client"]
openai_proxy = self.openai_proxy
http_client = self.http_client
http_async_client = self.http_async_client
raise ValueError(
"Cannot specify 'openai_proxy' if one of "
"'http_client'/'http_async_client' is already specified. Received:\n"
f"{openai_proxy=}\n{http_client=}\n{http_async_client=}"
)
if not values.get("client"):
if values["openai_proxy"] and not values["http_client"]:
if not (self.client or None):
if self.openai_proxy and not self.http_client:
try:
import httpx
except ImportError as e:
@@ -337,13 +338,13 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
"Could not import httpx python package. "
"Please install it with `pip install httpx`."
) from e
values["http_client"] = httpx.Client(proxy=values["openai_proxy"])
sync_specific = {"http_client": values["http_client"]}
values["client"] = openai.OpenAI(
self.http_client = httpx.Client(proxy=self.openai_proxy)
sync_specific = {"http_client": self.http_client}
self.client = openai.OpenAI(
**client_params, **sync_specific
).embeddings
if not values.get("async_client"):
if values["openai_proxy"] and not values["http_async_client"]:
if not (self.async_client or None):
if self.openai_proxy and not self.http_async_client:
try:
import httpx
except ImportError as e:
@@ -351,14 +352,14 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
"Could not import httpx python package. "
"Please install it with `pip install httpx`."
) from e
values["http_async_client"] = httpx.AsyncClient(
proxy=values["openai_proxy"]
self.http_async_client = httpx.AsyncClient(
proxy=self.openai_proxy
)
async_specific = {"http_client": values["http_async_client"]}
values["async_client"] = openai.AsyncOpenAI(
async_specific = {"http_client": self.http_async_client}
self.async_client = openai.AsyncOpenAI(
**client_params, **async_specific
).embeddings
return values
return self
@property
def _invocation_params(self) -> Dict[str, Any]:

View File

@@ -5,10 +5,12 @@ from typing import Any, Callable, Dict, List, Mapping, Optional, Union
import openai
from langchain_core.language_models import LangSmithParams
from langchain_core.pydantic_v1 import Field, SecretStr, root_validator
from pydantic import Field, SecretStr, root_validator, model_validator
from langchain_core.utils import from_env, secret_from_env
from langchain_openai.llms.base import BaseOpenAI
from typing_extensions import Self
logger = logging.getLogger(__name__)
@@ -100,29 +102,29 @@ class AzureOpenAI(BaseOpenAI):
"""Return whether this model can be serialized by Langchain."""
return True
@root_validator(pre=False, skip_on_failure=True, allow_reuse=True)
def validate_environment(cls, values: Dict) -> Dict:
@model_validator(mode="after")
def validate_environment(self) -> Self:
"""Validate that api key and python package exists in environment."""
if values["n"] < 1:
if self.n < 1:
raise ValueError("n must be at least 1.")
if values["streaming"] and values["n"] > 1:
if self.streaming and self.n > 1:
raise ValueError("Cannot stream results when n > 1.")
if values["streaming"] and values["best_of"] > 1:
if self.streaming and self.best_of > 1:
raise ValueError("Cannot stream results when best_of > 1.")
# For backwards compatibility. Before openai v1, no distinction was made
# between azure_endpoint and base_url (openai_api_base).
openai_api_base = values["openai_api_base"]
if openai_api_base and values["validate_base_url"]:
openai_api_base = self.openai_api_base
if openai_api_base and self.validate_base_url:
if "/openai" not in openai_api_base:
values["openai_api_base"] = (
values["openai_api_base"].rstrip("/") + "/openai"
self.openai_api_base = (
self.openai_api_base.rstrip("/") + "/openai"
)
raise ValueError(
"As of openai>=1.0.0, Azure endpoints should be specified via "
"the `azure_endpoint` param not `openai_api_base` "
"(or alias `base_url`)."
)
if values["deployment_name"]:
if self.deployment_name:
raise ValueError(
"As of openai>=1.0.0, if `deployment_name` (or alias "
"`azure_deployment`) is specified then "
@@ -130,37 +132,37 @@ class AzureOpenAI(BaseOpenAI):
"Instead use `deployment_name` (or alias `azure_deployment`) "
"and `azure_endpoint`."
)
values["deployment_name"] = None
self.deployment_name = None
client_params = {
"api_version": values["openai_api_version"],
"azure_endpoint": values["azure_endpoint"],
"azure_deployment": values["deployment_name"],
"api_key": values["openai_api_key"].get_secret_value()
if values["openai_api_key"]
"api_version": self.openai_api_version,
"azure_endpoint": self.azure_endpoint,
"azure_deployment": self.deployment_name,
"api_key": self.openai_api_key.get_secret_value()
if self.openai_api_key
else None,
"azure_ad_token": values["azure_ad_token"].get_secret_value()
if values["azure_ad_token"]
"azure_ad_token": self.azure_ad_token.get_secret_value()
if self.azure_ad_token
else None,
"azure_ad_token_provider": values["azure_ad_token_provider"],
"organization": values["openai_organization"],
"base_url": values["openai_api_base"],
"timeout": values["request_timeout"],
"max_retries": values["max_retries"],
"default_headers": values["default_headers"],
"default_query": values["default_query"],
"azure_ad_token_provider": self.azure_ad_token_provider,
"organization": self.openai_organization,
"base_url": self.openai_api_base,
"timeout": self.request_timeout,
"max_retries": self.max_retries,
"default_headers": self.default_headers,
"default_query": self.default_query,
}
if not values.get("client"):
sync_specific = {"http_client": values["http_client"]}
values["client"] = openai.AzureOpenAI(
if not (self.client or None):
sync_specific = {"http_client": self.http_client}
self.client = openai.AzureOpenAI(
**client_params, **sync_specific
).completions
if not values.get("async_client"):
async_specific = {"http_client": values["http_async_client"]}
values["async_client"] = openai.AsyncAzureOpenAI(
if not (self.async_client or None):
async_specific = {"http_client": self.http_async_client}
self.async_client = openai.AsyncAzureOpenAI(
**client_params, **async_specific
).completions
return values
return self
@property
def _identifying_params(self) -> Mapping[str, Any]:

View File

@@ -26,9 +26,13 @@ from langchain_core.callbacks import (
)
from langchain_core.language_models.llms import BaseLLM
from langchain_core.outputs import Generation, GenerationChunk, LLMResult
from langchain_core.pydantic_v1 import Field, SecretStr, root_validator
from pydantic import Field, SecretStr, root_validator, model_validator
from langchain_core.utils import get_pydantic_field_names
from langchain_core.utils.utils import build_extra_kwargs, from_env, secret_from_env
from pydantic import ConfigDict
from typing_extensions import Self
logger = logging.getLogger(__name__)
@@ -152,13 +156,11 @@ class BaseOpenAI(BaseLLM):
"""Optional additional JSON properties to include in the request parameters when
making requests to OpenAI compatible APIs, such as vLLM."""
class Config:
"""Configuration for this pydantic object."""
model_config = ConfigDict(populate_by_name=True,)
allow_population_by_field_name = True
@root_validator(pre=True)
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
@model_validator(mode="before")
@classmethod
def build_extra(cls, values: Dict[str, Any]) -> Any:
"""Build extra kwargs from additional params that were passed in."""
all_required_field_names = get_pydantic_field_names(cls)
extra = values.get("model_kwargs", {})
@@ -167,41 +169,41 @@ class BaseOpenAI(BaseLLM):
)
return values
@root_validator(pre=False, skip_on_failure=True, allow_reuse=True)
def validate_environment(cls, values: Dict) -> Dict:
@model_validator(mode="after")
def validate_environment(self) -> Self:
"""Validate that api key and python package exists in environment."""
if values["n"] < 1:
if self.n < 1:
raise ValueError("n must be at least 1.")
if values["streaming"] and values["n"] > 1:
if self.streaming and self.n > 1:
raise ValueError("Cannot stream results when n > 1.")
if values["streaming"] and values["best_of"] > 1:
if self.streaming and self.best_of > 1:
raise ValueError("Cannot stream results when best_of > 1.")
client_params = {
"api_key": (
values["openai_api_key"].get_secret_value()
if values["openai_api_key"]
self.openai_api_key.get_secret_value()
if self.openai_api_key
else None
),
"organization": values["openai_organization"],
"base_url": values["openai_api_base"],
"timeout": values["request_timeout"],
"max_retries": values["max_retries"],
"default_headers": values["default_headers"],
"default_query": values["default_query"],
"organization": self.openai_organization,
"base_url": self.openai_api_base,
"timeout": self.request_timeout,
"max_retries": self.max_retries,
"default_headers": self.default_headers,
"default_query": self.default_query,
}
if not values.get("client"):
sync_specific = {"http_client": values["http_client"]}
values["client"] = openai.OpenAI(
if not (self.client or None):
sync_specific = {"http_client": self.http_client}
self.client = openai.OpenAI(
**client_params, **sync_specific
).completions
if not values.get("async_client"):
async_specific = {"http_client": values["http_async_client"]}
values["async_client"] = openai.AsyncOpenAI(
if not (self.async_client or None):
async_specific = {"http_client": self.http_async_client}
self.async_client = openai.AsyncOpenAI(
**client_params, **async_specific
).completions
return values
return self
@property
def _default_params(self) -> Dict[str, Any]:

View File

@@ -20,7 +20,7 @@ from langchain_core.messages import (
)
from langchain_core.outputs import ChatGeneration, ChatResult, LLMResult
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.pydantic_v1 import BaseModel, Field
from pydantic import BaseModel, Field
from langchain_standard_tests.integration_tests.chat_models import (
_validate_tool_call_message,
)

View File

@@ -17,7 +17,7 @@ from langchain_core.messages import (
ToolMessage,
)
from langchain_core.messages.ai import UsageMetadata
from langchain_core.pydantic_v1 import BaseModel
from pydantic import BaseModel
from langchain_openai import ChatOpenAI
from langchain_openai.chat_models.base import (

View File

@@ -6,7 +6,7 @@ from uuid import UUID
from langchain_core.callbacks.base import AsyncCallbackHandler, BaseCallbackHandler
from langchain_core.messages import BaseMessage
from langchain_core.pydantic_v1 import BaseModel
from pydantic import BaseModel
class BaseFakeCallbackHandler(BaseModel):

View File

@@ -9,7 +9,7 @@ def test_loads_openai_llm() -> None:
llm_string = dumps(llm)
llm2 = loads(llm_string, secrets_map={"OPENAI_API_KEY": "hello"})
assert llm2 == llm
assert llm2.dict() == llm.dict()
llm_string_2 = dumps(llm2)
assert llm_string_2 == llm_string
assert isinstance(llm2, OpenAI)
@@ -20,7 +20,7 @@ def test_load_openai_llm() -> None:
llm_obj = dumpd(llm)
llm2 = load(llm_obj, secrets_map={"OPENAI_API_KEY": "hello"})
assert llm2 == llm
assert llm2.dict() == llm.dict()
assert dumpd(llm2) == llm_obj
assert isinstance(llm2, OpenAI)
@@ -30,7 +30,7 @@ def test_loads_openai_chat() -> None:
llm_string = dumps(llm)
llm2 = loads(llm_string, secrets_map={"OPENAI_API_KEY": "hello"})
assert llm2 == llm
assert llm2.dict() == llm.dict()
llm_string_2 = dumps(llm2)
assert llm_string_2 == llm_string
assert isinstance(llm2, ChatOpenAI)
@@ -41,6 +41,6 @@ def test_load_openai_chat() -> None:
llm_obj = dumpd(llm)
llm2 = load(llm_obj, secrets_map={"OPENAI_API_KEY": "hello"})
assert llm2 == llm
assert llm2.dict() == llm.dict()
assert dumpd(llm2) == llm_obj
assert isinstance(llm2, ChatOpenAI)

View File

@@ -2,7 +2,7 @@ from typing import Type, cast
import pytest
from langchain_core.load import dumpd
from langchain_core.pydantic_v1 import SecretStr
from pydantic import SecretStr
from pytest import CaptureFixture, MonkeyPatch
from langchain_openai import (

View File

@@ -6,7 +6,7 @@ from unittest import mock
import pytest
from langchain_core.language_models import BaseChatModel
from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr
from pydantic import BaseModel, Field, SecretStr
from langchain_core.runnables import RunnableBinding
from langchain_core.tools import tool

View File

@@ -5,7 +5,7 @@ from unittest import mock
import pytest
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import SecretStr
from pydantic import SecretStr
from langchain_standard_tests.base import BaseStandardTests