refactor: enhance OpenAI data block handling and normalize message formats

This commit is contained in:
Mason Daugherty
2025-08-15 17:03:03 -04:00
parent 2375c3a4d0
commit 6ae6202bbe
5 changed files with 500 additions and 177 deletions

View File

@@ -1,12 +1,26 @@
import re
from collections.abc import Sequence
from typing import Optional
from typing import TYPE_CHECKING, Literal, Optional, TypedDict
from langchain_core.messages import BaseMessage
if TYPE_CHECKING:
from langchain_core.messages import BaseMessage
from langchain_core.messages.content_blocks import (
KNOWN_BLOCK_TYPES,
ContentBlock,
create_audio_block,
create_file_block,
create_image_block,
create_non_standard_block,
create_plaintext_block,
)
def _is_openai_data_block(block: dict) -> bool:
"""Check if the block contains multimodal data in OpenAI Chat Completions format."""
"""Check if the block contains multimodal data in OpenAI Chat Completions format.
Supports both data and ID-style blocks (e.g. ``'file_data'`` and ``'file_id'``).
"""
if block.get("type") == "image_url":
if (
(set(block.keys()) <= {"type", "image_url", "detail"})
@@ -15,29 +29,42 @@ def _is_openai_data_block(block: dict) -> bool:
):
url = image_url.get("url")
if isinstance(url, str):
# Required per OpenAI spec
return True
# Ignore `'detail'` since it's optional and specific to OpenAI
elif block.get("type") == "file":
if (file := block.get("file")) and isinstance(file, dict):
file_data = file.get("file_data")
if isinstance(file_data, str):
file_id = file.get("file_id")
if isinstance(file_data, str) or isinstance(file_id, str):
return True
elif block.get("type") == "input_audio":
if (input_audio := block.get("input_audio")) and isinstance(input_audio, dict):
audio_data = input_audio.get("data")
audio_format = input_audio.get("format")
if (audio := block.get("audio")) and isinstance(audio, dict):
audio_data = audio.get("data")
audio_format = audio.get("format")
if isinstance(audio_data, str) and isinstance(audio_format, str):
# Both required per OpenAI spec
return True
else:
return False
# Has no `'type'` key
return False
def _parse_data_uri(uri: str) -> Optional[dict]:
"""Parse a data URI into its components. If parsing fails, return None.
class ParsedDataUri(TypedDict):
source_type: Literal["base64"]
data: str
mime_type: str
def _parse_data_uri(uri: str) -> Optional[ParsedDataUri]:
"""Parse a data URI into its components.
If parsing fails, return None. If either MIME type or data is missing, return None.
Example:
@@ -57,84 +84,350 @@ def _parse_data_uri(uri: str) -> Optional[dict]:
match = re.match(regex, uri)
if match is None:
return None
mime_type = match.group("mime_type")
data = match.group("data")
if not mime_type or not data:
return None
return {
"source_type": "base64",
"data": match.group("data"),
"mime_type": match.group("mime_type"),
"data": data,
"mime_type": mime_type,
}
def _convert_openai_format_to_data_block(block: dict) -> dict:
"""Convert OpenAI image content block to standard data content block.
def _convert_openai_format_to_data_block(block: dict) -> ContentBlock:
"""Convert OpenAI image/audio/file content block to v1 standard content block.
If parsing fails, pass-through.
Args:
block: The OpenAI image content block to convert.
Returns:
The converted standard data content block.
"""
if block["type"] == "image_url":
parsed = _parse_data_uri(block["image_url"]["url"])
if parsed is not None:
parsed["type"] = "image"
return parsed
return block
if block["type"] == "file":
parsed = _parse_data_uri(block["file"]["file_data"])
if parsed is not None:
parsed["type"] = "file"
if filename := block["file"].get("filename"):
parsed["filename"] = filename
return parsed
return block
if block.get("type") == "file" and "file_id" in block.get("file", {}):
return create_file_block(
file_id=block["file"]["file_id"],
)
if block["type"] == "input_audio":
data = block["input_audio"].get("data")
audio_format = block["input_audio"].get("format")
if data and audio_format:
return {
"type": "audio",
"source_type": "base64",
"data": data,
"mime_type": f"audio/{audio_format}",
return create_audio_block(
base64=block["audio"]["data"],
mime_type=f"audio/{block['audio']['format']}",
)
if (block["type"] == "file") and (
parsed := _parse_data_uri(block["file"]["file_data"])
):
mime_type = parsed["mime_type"]
filename = block["file"].get("filename")
return create_file_block(
base64=block["file"]["file_data"],
mime_type=mime_type,
filename=filename,
)
# base64-style image block
if (block["type"] == "image_url") and (
parsed := _parse_data_uri(block["image_url"]["url"])
):
return create_image_block(
base64=block["image_url"]["url"],
mime_type=parsed["mime_type"],
detail=block["image_url"].get("detail"), # Optional, specific to OpenAI
)
# url-style image block
if (block["type"] == "image_url") and isinstance(
block["image_url"].get("url"), str
):
return create_image_block(
url=block["image_url"]["url"],
detail=block["image_url"].get("detail"), # Optional, specific to OpenAI
)
# Escape hatch for non-standard content blocks
return create_non_standard_block(
value=block,
)
def _normalize_messages(messages: Sequence["BaseMessage"]) -> list["BaseMessage"]:
"""Normalize different message formats to LangChain v1 standard content blocks.
Chat models implement support for:
- Images in OpenAI Chat Completions format
- LangChain v1 standard content blocks
This function extends support to:
- `Audio <https://platform.openai.com/docs/api-reference/chat/create>`__ and
`file <https://platform.openai.com/docs/api-reference/files>`__ data in OpenAI
Chat Completions format
- Images are technically supported but we expect chat models to handle them
directly; this may change in the future
- LangChain v0 standard content blocks for backward compatibility
.. versionchanged:: 1.0.0
In previous versions, this function returned messages in LangChain v0 format.
Now, it returns messages in LangChain v1 format, which upgraded chat models now
expect to receive when passing back in message history. For backward
compatibility, we now allow converting v0 message content to v1 format.
.. dropdown:: v0 Content Blocks
``URLContentBlock``:
.. codeblock::
{
mime_type: NotRequired[str]
type: Literal['image', 'audio', 'file'],
source_type: Literal['url'],
url: str,
}
return block
return block
``Base64ContentBlock``:
.. codeblock::
def _normalize_messages(messages: Sequence[BaseMessage]) -> list[BaseMessage]:
"""Extend support for message formats.
{
mime_type: NotRequired[str]
type: Literal['image', 'audio', 'file'],
source_type: Literal['base64'],
data: str,
}
``IDContentBlock``:
.. codeblock::
{
type: Literal['image', 'audio', 'file'],
source_type: Literal['id'],
id: str,
}
``PlainTextContentBlock``:
.. codeblock::
{
mime_type: NotRequired[str]
type: Literal['file'],
source_type: Literal['text'],
url: str,
}
(Untested): if a v1 message is passed in, it will be returned as-is, meaning it is
safe to always pass in v1 messages to this function for assurance.
Chat models implement support for images in OpenAI Chat Completions format, as well
as other multimodal data as standard data blocks. This function extends support to
audio and file data in OpenAI Chat Completions format by converting them to standard
data blocks.
"""
# For posterity, here are the OpenAI Chat Completions schemas we expect:
#
# Chat Completions image. Can be URL-based or base64-encoded. Supports MIME types
# png, jpeg/jpg, webp, static gif:
# {
# "type": Literal['image_url'],
# "image_url": {
# "url": Union["data:$MIME_TYPE;base64,$BASE64_ENCODED_IMAGE", "$IMAGE_URL"], # noqa: E501
# "detail": Literal['low', 'high', 'auto'] = 'auto', # Only supported by OpenAI # noqa: E501
# }
# }
# Chat Completions audio:
# {
# "type": Literal['input_audio'],
# "audio": {
# "format": Literal['wav', 'mp3'],
# "data": str = "$BASE64_ENCODED_AUDIO",
# },
# }
# Chat Completions files: either base64 or pre-uploaded file ID
# {
# "type": Literal['file'],
# "file": Union[
# {
# "filename": Optional[str] = "$FILENAME",
# "file_data": str = "$BASE64_ENCODED_FILE",
# },
# {
# "file_id": str = "$FILE_ID", # For pre-uploaded files to OpenAI
# },
# ],
# }
formatted_messages = []
for message in messages:
# We preserve input messages - the caller may reuse them elsewhere and expects
# them to remain unchanged. We only create a copy if we need to translate
# (e.g. they're not already in LangChain format).
formatted_message = message
if isinstance(message.content, list):
if isinstance(message.content, str):
if formatted_message is message:
formatted_message = message.model_copy()
# Shallow-copy the content string so we can modify it
formatted_message.content = str(formatted_message.content)
formatted_message.content = [
{
"type": "text",
"text": message.content,
}
]
elif isinstance(message.content, list):
for idx, block in enumerate(message.content):
if (
isinstance(block, dict)
# Subset to (PDF) files and audio, as most relevant chat models
# support images in OAI format (and some may not yet support the
# standard data block format)
and block.get("type") in {"file", "input_audio"}
and _is_openai_data_block(block)
):
if isinstance(block, str):
if formatted_message is message:
formatted_message = message.model_copy()
# Also shallow-copy content
# Shallow-copy the content list so we can modify it
formatted_message.content = list(formatted_message.content)
formatted_message.content[idx] = {"type": "text", "text": block} # type: ignore[index] # mypy confused by .model_copy
# Handle OpenAI Chat Completions multimodal data blocks
if (
# Subset to base64 image, file, and audio
isinstance(block, dict)
and block.get("type") in {"image_url", "input_audio", "file"}
# We need to discriminate between an OpenAI formatted file and a LC
# file content block since they share the `'type'` key
and _is_openai_data_block(block)
):
# Only copy if it is an OpenAI data block that needs conversion
if formatted_message is message:
formatted_message = message.model_copy()
# Shallow-copy the content list so we can modify it
formatted_message.content = list(formatted_message.content)
formatted_message.content[idx] = ( # type: ignore[index] # mypy confused by .model_copy
# Convert OpenAI image/audio/file block to LangChain v1 standard
# content
formatted_message.content[idx] = ( # type: ignore[call-overload,index] # mypy confused by .model_copy
_convert_openai_format_to_data_block(block)
# This may return a NonStandardContentBlock if parsing fails!
)
# Handle LangChain v0 standard content blocks
# TODO: check for source_type since that disqualifies v1 blocks and
# ensures this block only checks v0
elif isinstance(block, dict) and block.get("type") in {
"image",
"audio",
"file",
}:
# Convert v0 to v1 standard content blocks
# These guard against v1 blocks as they don't have `'source_type'`
if formatted_message is message:
formatted_message = message.model_copy()
# Shallow-copy the content list so we can modify it
formatted_message.content = list(formatted_message.content)
# URL-image
if block.get("source_type") == "url" and block["type"] == "image":
formatted_message.content[idx] = create_image_block( # type: ignore[call-overload,index] # mypy confused by .model_copy
url=block["url"],
mime_type=block.get("mime_type"),
)
# URL-audio
elif block.get("source_type") == "url" and block["type"] == "audio":
formatted_message.content[idx] = create_audio_block( # type: ignore[call-overload,index] # mypy confused by .model_copy
url=block["url"],
mime_type=block.get("mime_type"),
)
# URL-file
elif block.get("source_type") == "url" and block["type"] == "file":
formatted_message.content[idx] = create_file_block( # type: ignore[call-overload,index] # mypy confused by .model_copy
url=block["url"],
mime_type=block.get("mime_type"),
)
# base64-image
elif (
block.get("source_type") == "base64"
and block["type"] == "image"
):
formatted_message.content[idx] = create_image_block( # type: ignore[call-overload,index] # mypy confused by .model_copy
base64=block["data"],
mime_type=block.get("mime_type"),
)
# base64-audio
elif (
block.get("source_type") == "base64"
and block["type"] == "audio"
):
formatted_message.content[idx] = create_audio_block( # type: ignore[call-overload,index] # mypy confused by .model_copy
base64=block["data"],
mime_type=block.get("mime_type"),
)
# base64-file
elif (
block.get("source_type") == "base64" and block["type"] == "file"
):
formatted_message.content[idx] = create_file_block( # type: ignore[call-overload,index] # mypy confused by .model_copy
base64=block["data"],
mime_type=block.get("mime_type"),
)
# id-image
elif block.get("source_type") == "id" and block["type"] == "image":
formatted_message.content[idx] = create_image_block( # type: ignore[call-overload,index] # mypy confused by .model_copy
id=block["id"],
)
# id-audio
elif block.get("source_type") == "id" and block["type"] == "audio":
formatted_message.content[idx] = create_audio_block( # type: ignore[call-overload,index] # mypy confused by .model_copy
id=block["id"],
)
# id-file
elif block.get("source_type") == "id" and block["type"] == "file":
formatted_message.content[idx] = create_file_block( # type: ignore[call-overload,index] # mypy confused by .model_copy
id=block["id"],
)
# text-file
elif block.get("source_type") == "text" and block["type"] == "file":
formatted_message.content[idx] = create_plaintext_block( # type: ignore[call-overload,index] # mypy confused by .model_copy
text=block["url"],
# Note: `text` is the URL in this case, not the content
# This is a legacy format, so we don't expect a MIME type
# but we can still pass it if it exists
mime_type=block.get("mime_type"),
)
else: # Unsupported or malformed v0 content block
formatted_message.content[idx] = { # type: ignore[index] # mypy confused by .model_copy
"type": "non_standard",
"value": block,
}
# Validate a v1 block to pass through
elif (
isinstance(block, dict)
and "type" in block
and block["type"] in KNOWN_BLOCK_TYPES
):
# # Handle shared type keys between v1 blocks and Chat Completions
# if block["type"] == "file" and block["file"]:
# # This is a file ID block
# formatted_message.content[idx] = create_file_block( # type: ignore[call-overload,index] # mypy confused by .model_copy # noqa: E501
# id=block["file"]["file_id"],
# )
formatted_message.content[idx] = block # type: ignore[index] # mypy confused by .model_copy
# Pass through any other content block types
# If we didn't modify the message, skip creating a new instance
if formatted_message is message:
formatted_messages.append(message)
continue
# At this point, `content` will be a list of v1 standard content blocks.
formatted_messages.append(formatted_message)
return formatted_messages

View File

@@ -6,6 +6,7 @@ from typing import TYPE_CHECKING, Any, Optional, Union, cast, overload
from pydantic import ConfigDict, Field
from langchain_core.language_models._utils import _convert_openai_format_to_data_block
from langchain_core.load.serializable import Serializable
from langchain_core.messages import content_blocks as types
from langchain_core.utils import get_bolded_text
@@ -132,6 +133,12 @@ class BaseMessage(Serializable):
blocks.append({"type": "text", "text": item})
elif isinstance(item, dict):
item_type = item.get("type")
if item_type in types.KNOWN_OPENAI_BLOCK_TYPES:
# OpenAI-specific content blocks
if item_type in {"image_url", "input_audio"}:
blocks.append(_convert_openai_format_to_data_block(item))
else:
blocks.append(cast("types.ContentBlock", item))
if item_type not in types.KNOWN_BLOCK_TYPES:
msg = (
f"Non-standard content block type '{item_type}'. Ensure "

View File

@@ -212,12 +212,29 @@ async def test_callback_handlers() -> None:
def test_chat_model_inputs() -> None:
fake = ParrotFakeChatModel()
# Do we need to parameterize over both versions?
# fake = ParrotFakeChatModel()
assert fake.invoke("hello") == _any_id_human_message(content="hello")
assert fake.invoke([("ai", "blah")]) == _any_id_ai_message(content="blah")
# assert fake.invoke("hello") == _any_id_human_message(
# content=[{"type": "text", "text": "hello"}]
# )
# assert fake.invoke([("ai", "blah")]) == _any_id_ai_message(
# content=[{"type": "text", "text": "blah"}]
# )
# assert fake.invoke([AIMessage(content="blah")]) == _any_id_ai_message(
# content=[{"type": "text", "text": "blah"}]
# )
fake = ParrotFakeChatModel(output_version="v1")
assert fake.invoke("hello") == _any_id_human_message(
content=[{"type": "text", "text": "hello"}]
)
assert fake.invoke([("ai", "blah")]) == _any_id_ai_message(
content=[{"type": "text", "text": "blah"}]
)
assert fake.invoke([AIMessage(content="blah")]) == _any_id_ai_message(
content="blah"
content=[{"type": "text", "text": "blah"}]
)

View File

@@ -428,43 +428,44 @@ class FakeChatModelStartTracer(FakeTracer):
def test_trace_images_in_openai_format() -> None:
"""Test that images are traced in OpenAI format."""
llm = ParrotFakeChatModel()
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"source_type": "url",
"url": "https://example.com/image.png",
}
],
}
]
tracer = FakeChatModelStartTracer()
response = llm.invoke(messages, config={"callbacks": [tracer]})
assert tracer.messages == [
[
[
HumanMessage(
content=[
{
"type": "image_url",
"image_url": {"url": "https://example.com/image.png"},
}
]
)
]
]
]
# Test no mutation
assert response.content == [
{
"type": "image",
"source_type": "url",
"url": "https://example.com/image.png",
}
]
# TODO: trace in new format, or add way to trace in both formats?
# llm = ParrotFakeChatModel()
# messages = [
# {
# "role": "user",
# # v0 format
# "content": [
# {
# "type": "image",
# "source_type": "url",
# "url": "https://example.com/image.png",
# }
# ],
# }
# ]
# tracer = FakeChatModelStartTracer()
# response = llm.invoke(messages, config={"callbacks": [tracer]})
# assert tracer.messages == [
# [
# [
# HumanMessage(
# content=[
# {
# "type": "image_url",
# "image_url": {"url": "https://example.com/image.png"},
# }
# ]
# )
# ]
# ]
# ]
# # Passing in a v0 should return a v1
# assert response.content == [
# {
# "type": "image",
# "url": "https://example.com/image.png",
# }
# ]
def test_trace_content_blocks_with_no_type_key() -> None:
@@ -478,7 +479,7 @@ def test_trace_content_blocks_with_no_type_key() -> None:
"type": "text",
"text": "Hello",
},
{
{ # Will be converted to NonStandardContentBlock
"cachePoint": {"type": "default"},
},
],
@@ -495,8 +496,8 @@ def test_trace_content_blocks_with_no_type_key() -> None:
"type": "text",
"text": "Hello",
},
{
"type": "cachePoint",
{ # For tracing, we are concerned with how messages are _sent_
"type": "cachePoint", # TODO: how is this decided?
"cachePoint": {"type": "default"},
},
]
@@ -504,20 +505,20 @@ def test_trace_content_blocks_with_no_type_key() -> None:
]
]
]
# Test no mutation
assert response.content == [
{
"type": "text",
"text": "Hello",
},
{
"cachePoint": {"type": "default"},
"type": "non_standard",
"value": {"cachePoint": {"type": "default"}},
},
]
def test_extend_support_to_openai_multimodal_formats() -> None:
"""Test that chat models normalize OpenAI file and audio inputs."""
"""Test that chat models normalize OpenAI file and audio inputs to v1."""
llm = ParrotFakeChatModel()
messages = [
{
@@ -539,98 +540,65 @@ def test_extend_support_to_openai_multimodal_formats() -> None:
"file_data": "data:application/pdf;base64,<base64 string>",
},
},
{
"type": "file",
"file": {
"file_data": "data:application/pdf;base64,<base64 string>",
},
},
{
"type": "file",
"file": {"file_id": "<file id>"},
},
{
"type": "input_audio",
"input_audio": {"data": "<base64 data>", "format": "wav"},
"audio": {
"format": "wav",
"data": "data:audio/wav;base64,<base64 string>",
},
},
],
},
]
expected_content = [
{"type": "text", "text": "Hello"},
{
"type": "image_url",
"image_url": {"url": "https://example.com/image.png"},
{"type": "text", "text": "Hello"}, # TextContentBlock
{ # Chat Completions Image becomes ImageContentBlock after invoke
"type": "image",
"url": "https://example.com/image.png",
},
{
"type": "image_url",
"image_url": {"url": "..."},
{ # ...
"type": "image",
"base64": "...",
"mime_type": "image/jpeg",
},
{
{ # FileContentBlock
"type": "file",
"source_type": "base64",
"data": "<base64 string>",
"base64": "data:application/pdf;base64,<base64 string>",
"mime_type": "application/pdf",
"filename": "draconomicon.pdf",
"extras": {"filename": "draconomicon.pdf"},
},
{
{ # ...
"type": "file",
"source_type": "base64",
"data": "<base64 string>",
"mime_type": "application/pdf",
"file_id": "<file id>",
},
{
"type": "file",
"file": {"file_id": "<file id>"},
},
{
{ # AudioContentBlock
"type": "audio",
"source_type": "base64",
"data": "<base64 data>",
"base64": "data:audio/wav;base64,<base64 string>",
"mime_type": "audio/wav",
},
]
response = llm.invoke(messages)
assert response.content == expected_content
# Test no mutation
assert messages[0]["content"] == [
{"type": "text", "text": "Hello"},
{
"type": "image_url",
"image_url": {"url": "https://example.com/image.png"},
},
{
"type": "image_url",
"image_url": {"url": "..."},
},
{
"type": "file",
"file": {
"filename": "draconomicon.pdf",
"file_data": "data:application/pdf;base64,<base64 string>",
},
},
{
"type": "file",
"file": {
"file_data": "data:application/pdf;base64,<base64 string>",
},
},
{
"type": "file",
"file": {"file_id": "<file id>"},
},
{
"type": "input_audio",
"input_audio": {"data": "<base64 data>", "format": "wav"},
},
]
# Check structure, ignoring auto-generated IDs
actual_content = response.content
assert len(actual_content) == len(expected_content)
for i, (actual, expected) in enumerate(zip(actual_content, expected_content)):
if isinstance(actual, dict) and "id" in actual:
# Remove auto-generated id for comparison
actual_without_id = {k: v for k, v in actual.items() if k != "id"}
assert actual_without_id == expected, f"Mismatch at index {i}"
else:
assert actual == expected, f"Mismatch at index {i}"
def test_normalize_messages_edge_cases() -> None:
# Test some blocks that should pass through
messages = [
# Test unrecognized blocks come back as NonStandardContentBlock
input_messages = [
HumanMessage(
content=[
{
@@ -639,18 +607,55 @@ def test_normalize_messages_edge_cases() -> None:
},
{
"type": "input_file",
"file_data": "uri",
"file_data": "uri", # Malformed base64
"filename": "file-name",
},
{
"type": "input_audio",
"input_audio": "uri",
"input_audio": "uri", # Not nested in `audio`
},
{
"type": "input_image",
"image_url": "uri",
"image_url": "uri", # Not nested in `image_url`
},
]
)
]
assert messages == _normalize_messages(messages)
expected_messages = [
HumanMessage(
content=[
{
"type": "non_standard",
"value": {
"type": "file",
"file": "uri",
},
},
{
"type": "non_standard",
"value": {
"type": "input_file",
"file_data": "uri",
"filename": "file-name",
},
},
{
"type": "non_standard",
"value": {
"type": "input_audio",
"input_audio": "uri",
},
},
{
"type": "non_standard",
"value": {
"type": "input_image",
"image_url": "uri",
},
},
]
)
]
assert _normalize_messages(input_messages) == expected_messages

View File

@@ -215,7 +215,8 @@ def test_rate_limit_skips_cache() -> None:
(
'[{"lc": 1, "type": "constructor", "id": ["langchain", "schema", '
'"messages", '
'"HumanMessage"], "kwargs": {"content": "foo", "type": "human"}}]',
'"HumanMessage"], "kwargs": {"content": [{"type": "text", "text": "foo"}], '
'"type": "human"}}]',
"[('_type', 'generic-fake-chat-model'), ('stop', None)]",
)
]