mirror of
https://github.com/hwchase17/langchain.git
synced 2025-08-31 10:23:18 +00:00
Qdrant self query (#5567)
Add self query abilities to qdrant vectorstore
This commit is contained in:
396
docs/modules/indexes/retrievers/examples/qdrant_self_query.ipynb
Normal file
396
docs/modules/indexes/retrievers/examples/qdrant_self_query.ipynb
Normal file
@@ -0,0 +1,396 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "13afcae7",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Self-querying with Qdrant\n",
|
||||
"\n",
|
||||
">[Qdrant](https://qdrant.tech/documentation/) (read: quadrant ) is a vector similarity search engine. It provides a production-ready service with a convenient API to store, search, and manage points - vectors with an additional payload. `Qdrant` is tailored to extended filtering support. It makes it useful \n",
|
||||
"\n",
|
||||
"In the notebook we'll demo the `SelfQueryRetriever` wrapped around a Qdrant vector store. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "68e75fb9",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Creating a Qdrant vectorstore\n",
|
||||
"First we'll want to create a Chroma VectorStore and seed it with some data. We've created a small demo set of documents that contain summaries of movies.\n",
|
||||
"\n",
|
||||
"NOTE: The self-query retriever requires you to have `lark` installed (`pip install lark`). We also need the `qdrant-client` package."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "63a8af5b",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#!pip install lark qdrant-client"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "83811610-7df3-4ede-b268-68a6a83ba9e2",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"We want to use `OpenAIEmbeddings` so we have to get the OpenAI API Key."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "dd01b61b-7d32-4a55-85d6-b2d2d4f18840",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# import os\n",
|
||||
"# import getpass\n",
|
||||
"\n",
|
||||
"# os.environ['OPENAI_API_KEY'] = getpass.getpass('OpenAI API Key:')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "cb4a5787",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.schema import Document\n",
|
||||
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
|
||||
"from langchain.vectorstores import Qdrant\n",
|
||||
"\n",
|
||||
"embeddings = OpenAIEmbeddings()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "bcbe04d9",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"docs = [\n",
|
||||
" Document(page_content=\"A bunch of scientists bring back dinosaurs and mayhem breaks loose\", metadata={\"year\": 1993, \"rating\": 7.7, \"genre\": \"science fiction\"}),\n",
|
||||
" Document(page_content=\"Leo DiCaprio gets lost in a dream within a dream within a dream within a ...\", metadata={\"year\": 2010, \"director\": \"Christopher Nolan\", \"rating\": 8.2}),\n",
|
||||
" Document(page_content=\"A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea\", metadata={\"year\": 2006, \"director\": \"Satoshi Kon\", \"rating\": 8.6}),\n",
|
||||
" Document(page_content=\"A bunch of normal-sized women are supremely wholesome and some men pine after them\", metadata={\"year\": 2019, \"director\": \"Greta Gerwig\", \"rating\": 8.3}),\n",
|
||||
" Document(page_content=\"Toys come alive and have a blast doing so\", metadata={\"year\": 1995, \"genre\": \"animated\"}),\n",
|
||||
" Document(page_content=\"Three men walk into the Zone, three men walk out of the Zone\", metadata={\"year\": 1979, \"rating\": 9.9, \"director\": \"Andrei Tarkovsky\", \"genre\": \"science fiction\", \"rating\": 9.9})\n",
|
||||
"]\n",
|
||||
"vectorstore = Qdrant.from_documents(\n",
|
||||
" docs, \n",
|
||||
" embeddings, \n",
|
||||
" location=\":memory:\", # Local mode with in-memory storage only\n",
|
||||
" collection_name=\"my_documents\",\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "5ecaab6d",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Creating our self-querying retriever\n",
|
||||
"Now we can instantiate our retriever. To do this we'll need to provide some information upfront about the metadata fields that our documents support and a short description of the document contents."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "86e34dbf",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.llms import OpenAI\n",
|
||||
"from langchain.retrievers.self_query.base import SelfQueryRetriever\n",
|
||||
"from langchain.chains.query_constructor.base import AttributeInfo\n",
|
||||
"\n",
|
||||
"metadata_field_info=[\n",
|
||||
" AttributeInfo(\n",
|
||||
" name=\"genre\",\n",
|
||||
" description=\"The genre of the movie\", \n",
|
||||
" type=\"string or list[string]\", \n",
|
||||
" ),\n",
|
||||
" AttributeInfo(\n",
|
||||
" name=\"year\",\n",
|
||||
" description=\"The year the movie was released\", \n",
|
||||
" type=\"integer\", \n",
|
||||
" ),\n",
|
||||
" AttributeInfo(\n",
|
||||
" name=\"director\",\n",
|
||||
" description=\"The name of the movie director\", \n",
|
||||
" type=\"string\", \n",
|
||||
" ),\n",
|
||||
" AttributeInfo(\n",
|
||||
" name=\"rating\",\n",
|
||||
" description=\"A 1-10 rating for the movie\",\n",
|
||||
" type=\"float\"\n",
|
||||
" ),\n",
|
||||
"]\n",
|
||||
"document_content_description = \"Brief summary of a movie\"\n",
|
||||
"llm = OpenAI(temperature=0)\n",
|
||||
"retriever = SelfQueryRetriever.from_llm(llm, vectorstore, document_content_description, metadata_field_info, verbose=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "ea9df8d4",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Testing it out\n",
|
||||
"And now we can try actually using our retriever!"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "38a126e9",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"query='dinosaur' filter=None limit=None\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[Document(page_content='A bunch of scientists bring back dinosaurs and mayhem breaks loose', metadata={'year': 1993, 'rating': 7.7, 'genre': 'science fiction'}),\n",
|
||||
" Document(page_content='Toys come alive and have a blast doing so', metadata={'year': 1995, 'genre': 'animated'}),\n",
|
||||
" Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'year': 1979, 'rating': 9.9, 'director': 'Andrei Tarkovsky', 'genre': 'science fiction'}),\n",
|
||||
" Document(page_content='A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea', metadata={'year': 2006, 'director': 'Satoshi Kon', 'rating': 8.6})]"
|
||||
]
|
||||
},
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# This example only specifies a relevant query\n",
|
||||
"retriever.get_relevant_documents(\"What are some movies about dinosaurs\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"id": "fc3f1e6e",
|
||||
"metadata": {
|
||||
"scrolled": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"query=' ' filter=Comparison(comparator=<Comparator.GT: 'gt'>, attribute='rating', value=8.5) limit=None\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'year': 1979, 'rating': 9.9, 'director': 'Andrei Tarkovsky', 'genre': 'science fiction'}),\n",
|
||||
" Document(page_content='A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea', metadata={'year': 2006, 'director': 'Satoshi Kon', 'rating': 8.6})]"
|
||||
]
|
||||
},
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# This example only specifies a filter\n",
|
||||
"retriever.get_relevant_documents(\"I want to watch a movie rated higher than 8.5\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"id": "b19d4da0",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"query='women' filter=Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='director', value='Greta Gerwig') limit=None\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[Document(page_content='A bunch of normal-sized women are supremely wholesome and some men pine after them', metadata={'year': 2019, 'director': 'Greta Gerwig', 'rating': 8.3})]"
|
||||
]
|
||||
},
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# This example specifies a query and a filter\n",
|
||||
"retriever.get_relevant_documents(\"Has Greta Gerwig directed any movies about women\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"id": "f900e40e",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"query=' ' filter=Operation(operator=<Operator.AND: 'and'>, arguments=[Comparison(comparator=<Comparator.GT: 'gt'>, attribute='rating', value=8.5), Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='genre', value='science fiction')]) limit=None\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'year': 1979, 'rating': 9.9, 'director': 'Andrei Tarkovsky', 'genre': 'science fiction'})]"
|
||||
]
|
||||
},
|
||||
"execution_count": 10,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# This example specifies a composite filter\n",
|
||||
"retriever.get_relevant_documents(\"What's a highly rated (above 8.5) science fiction film?\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"id": "12a51522",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"query='toys' filter=Operation(operator=<Operator.AND: 'and'>, arguments=[Comparison(comparator=<Comparator.GT: 'gt'>, attribute='year', value=1990), Comparison(comparator=<Comparator.LT: 'lt'>, attribute='year', value=2005), Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='genre', value='animated')]) limit=None\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[Document(page_content='Toys come alive and have a blast doing so', metadata={'year': 1995, 'genre': 'animated'})]"
|
||||
]
|
||||
},
|
||||
"execution_count": 11,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# This example specifies a query and composite filter\n",
|
||||
"retriever.get_relevant_documents(\"What's a movie after 1990 but before 2005 that's all about toys, and preferably is animated\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "39bd1de1-b9fe-4a98-89da-58d8a7a6ae51",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Filter k\n",
|
||||
"\n",
|
||||
"We can also use the self query retriever to specify `k`: the number of documents to fetch.\n",
|
||||
"\n",
|
||||
"We can do this by passing `enable_limit=True` to the constructor."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"id": "bff36b88-b506-4877-9c63-e5a1a8d78e64",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"retriever = SelfQueryRetriever.from_llm(\n",
|
||||
" llm, \n",
|
||||
" vectorstore, \n",
|
||||
" document_content_description, \n",
|
||||
" metadata_field_info, \n",
|
||||
" enable_limit=True,\n",
|
||||
" verbose=True\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"id": "2758d229-4f97-499c-819f-888acaf8ee10",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"query='dinosaur' filter=None limit=2\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[Document(page_content='A bunch of scientists bring back dinosaurs and mayhem breaks loose', metadata={'year': 1993, 'rating': 7.7, 'genre': 'science fiction'}),\n",
|
||||
" Document(page_content='Toys come alive and have a blast doing so', metadata={'year': 1995, 'genre': 'animated'})]"
|
||||
]
|
||||
},
|
||||
"execution_count": 13,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# This example only specifies a relevant query\n",
|
||||
"retriever.get_relevant_documents(\"what are two movies about dinosaurs\")"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.3"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
@@ -401,17 +401,18 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "525e3582",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Metadata filtering\n",
|
||||
"\n",
|
||||
"Qdrant has an [extensive filtering system](https://qdrant.tech/documentation/concepts/filtering/) with rich type support. It is also possible to use the filters in Langchain, by passing an additional param to both the `similarity_search_with_score` and `similarity_search` methods."
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "1c2c58dc",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"```python\n",
|
||||
"from qdrant_client.http import models as rest\n",
|
||||
@@ -419,10 +420,7 @@
|
||||
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
|
||||
"found_docs = qdrant.similarity_search_with_score(query, filter=rest.Filter(...))\n",
|
||||
"```"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
@@ -683,7 +681,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.6"
|
||||
"version": "3.11.3"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
@@ -33,6 +33,7 @@ class StructuredQueryOutputParser(BaseOutputParser[StructuredQuery]):
|
||||
def parse(self, text: str) -> StructuredQuery:
|
||||
try:
|
||||
expected_keys = ["query", "filter"]
|
||||
allowed_keys = ["query", "filter", "limit"]
|
||||
parsed = parse_and_check_json_markdown(text, expected_keys)
|
||||
if len(parsed["query"]) == 0:
|
||||
parsed["query"] = " "
|
||||
@@ -40,10 +41,10 @@ class StructuredQueryOutputParser(BaseOutputParser[StructuredQuery]):
|
||||
parsed["filter"] = None
|
||||
else:
|
||||
parsed["filter"] = self.ast_parse(parsed["filter"])
|
||||
if not parsed.get("limit"):
|
||||
parsed.pop("limit", None)
|
||||
return StructuredQuery(
|
||||
query=parsed["query"],
|
||||
filter=parsed["filter"],
|
||||
limit=parsed.get("limit"),
|
||||
**{k: v for k, v in parsed.items() if k in allowed_keys}
|
||||
)
|
||||
except Exception as e:
|
||||
raise OutputParserException(
|
||||
|
@@ -3,7 +3,7 @@ from __future__ import annotations
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
from enum import Enum
|
||||
from typing import Any, List, Optional, Sequence
|
||||
from typing import Any, List, Optional, Sequence, Union
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
@@ -14,6 +14,20 @@ class Visitor(ABC):
|
||||
allowed_comparators: Optional[Sequence[Comparator]] = None
|
||||
allowed_operators: Optional[Sequence[Operator]] = None
|
||||
|
||||
def _validate_func(self, func: Union[Operator, Comparator]) -> None:
|
||||
if isinstance(func, Operator) and self.allowed_operators is not None:
|
||||
if func not in self.allowed_operators:
|
||||
raise ValueError(
|
||||
f"Received disallowed operator {func}. Allowed "
|
||||
f"comparators are {self.allowed_operators}"
|
||||
)
|
||||
if isinstance(func, Comparator) and self.allowed_comparators is not None:
|
||||
if func not in self.allowed_comparators:
|
||||
raise ValueError(
|
||||
f"Received disallowed comparator {func}. Allowed "
|
||||
f"comparators are {self.allowed_comparators}"
|
||||
)
|
||||
|
||||
@abstractmethod
|
||||
def visit_operation(self, operation: Operation) -> Any:
|
||||
"""Translate an Operation."""
|
||||
|
@@ -10,23 +10,28 @@ from langchain.chains.query_constructor.ir import StructuredQuery, Visitor
|
||||
from langchain.chains.query_constructor.schema import AttributeInfo
|
||||
from langchain.retrievers.self_query.chroma import ChromaTranslator
|
||||
from langchain.retrievers.self_query.pinecone import PineconeTranslator
|
||||
from langchain.retrievers.self_query.qdrant import QdrantTranslator
|
||||
from langchain.retrievers.self_query.weaviate import WeaviateTranslator
|
||||
from langchain.schema import BaseRetriever, Document
|
||||
from langchain.vectorstores import Chroma, Pinecone, VectorStore, Weaviate
|
||||
from langchain.vectorstores import Chroma, Pinecone, Qdrant, VectorStore, Weaviate
|
||||
|
||||
|
||||
def _get_builtin_translator(vectorstore_cls: Type[VectorStore]) -> Visitor:
|
||||
def _get_builtin_translator(vectorstore: VectorStore) -> Visitor:
|
||||
"""Get the translator class corresponding to the vector store class."""
|
||||
vectorstore_cls = vectorstore.__class__
|
||||
BUILTIN_TRANSLATORS: Dict[Type[VectorStore], Type[Visitor]] = {
|
||||
Pinecone: PineconeTranslator,
|
||||
Chroma: ChromaTranslator,
|
||||
Weaviate: WeaviateTranslator,
|
||||
Qdrant: QdrantTranslator,
|
||||
}
|
||||
if vectorstore_cls not in BUILTIN_TRANSLATORS:
|
||||
raise ValueError(
|
||||
f"Self query retriever with Vector Store type {vectorstore_cls}"
|
||||
f" not supported."
|
||||
)
|
||||
if isinstance(vectorstore, Qdrant):
|
||||
return QdrantTranslator(metadata_key=vectorstore.metadata_payload_key)
|
||||
return BUILTIN_TRANSLATORS[vectorstore_cls]()
|
||||
|
||||
|
||||
@@ -55,9 +60,8 @@ class SelfQueryRetriever(BaseRetriever, BaseModel):
|
||||
def validate_translator(cls, values: Dict) -> Dict:
|
||||
"""Validate translator."""
|
||||
if "structured_query_translator" not in values:
|
||||
vectorstore_cls = values["vectorstore"].__class__
|
||||
values["structured_query_translator"] = _get_builtin_translator(
|
||||
vectorstore_cls
|
||||
values["vectorstore"]
|
||||
)
|
||||
return values
|
||||
|
||||
@@ -102,7 +106,7 @@ class SelfQueryRetriever(BaseRetriever, BaseModel):
|
||||
**kwargs: Any,
|
||||
) -> "SelfQueryRetriever":
|
||||
if structured_query_translator is None:
|
||||
structured_query_translator = _get_builtin_translator(vectorstore.__class__)
|
||||
structured_query_translator = _get_builtin_translator(vectorstore)
|
||||
chain_kwargs = chain_kwargs or {}
|
||||
|
||||
if "allowed_comparators" not in chain_kwargs:
|
||||
|
@@ -18,18 +18,7 @@ class ChromaTranslator(Visitor):
|
||||
"""Subset of allowed logical operators."""
|
||||
|
||||
def _format_func(self, func: Union[Operator, Comparator]) -> str:
|
||||
if isinstance(func, Operator) and self.allowed_operators is not None:
|
||||
if func not in self.allowed_operators:
|
||||
raise ValueError(
|
||||
f"Received disallowed operator {func}. Allowed "
|
||||
f"comparators are {self.allowed_operators}"
|
||||
)
|
||||
if isinstance(func, Comparator) and self.allowed_comparators is not None:
|
||||
if func not in self.allowed_comparators:
|
||||
raise ValueError(
|
||||
f"Received disallowed comparator {func}. Allowed "
|
||||
f"comparators are {self.allowed_comparators}"
|
||||
)
|
||||
self._validate_func(func)
|
||||
return f"${func.value}"
|
||||
|
||||
def visit_operation(self, operation: Operation) -> Dict:
|
||||
|
@@ -18,18 +18,7 @@ class PineconeTranslator(Visitor):
|
||||
"""Subset of allowed logical operators."""
|
||||
|
||||
def _format_func(self, func: Union[Operator, Comparator]) -> str:
|
||||
if isinstance(func, Operator) and self.allowed_operators is not None:
|
||||
if func not in self.allowed_operators:
|
||||
raise ValueError(
|
||||
f"Received disallowed operator {func}. Allowed "
|
||||
f"comparators are {self.allowed_operators}"
|
||||
)
|
||||
if isinstance(func, Comparator) and self.allowed_comparators is not None:
|
||||
if func not in self.allowed_comparators:
|
||||
raise ValueError(
|
||||
f"Received disallowed comparator {func}. Allowed "
|
||||
f"comparators are {self.allowed_comparators}"
|
||||
)
|
||||
self._validate_func(func)
|
||||
return f"${func.value}"
|
||||
|
||||
def visit_operation(self, operation: Operation) -> Dict:
|
||||
|
66
langchain/retrievers/self_query/qdrant.py
Normal file
66
langchain/retrievers/self_query/qdrant.py
Normal file
@@ -0,0 +1,66 @@
|
||||
"""Logic for converting internal query language to a valid Qdrant query."""
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import TYPE_CHECKING, Tuple
|
||||
|
||||
from langchain.chains.query_constructor.ir import (
|
||||
Comparator,
|
||||
Comparison,
|
||||
Operation,
|
||||
Operator,
|
||||
StructuredQuery,
|
||||
Visitor,
|
||||
)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from qdrant_client.http import models as rest
|
||||
|
||||
|
||||
class QdrantTranslator(Visitor):
|
||||
"""Logic for converting internal query language elements to valid filters."""
|
||||
|
||||
def __init__(self, metadata_key: str):
|
||||
self.metadata_key = metadata_key
|
||||
|
||||
def visit_operation(self, operation: Operation) -> rest.Filter:
|
||||
from qdrant_client.http import models as rest
|
||||
|
||||
args = [arg.accept(self) for arg in operation.arguments]
|
||||
operator = {
|
||||
Operator.AND: "must",
|
||||
Operator.OR: "should",
|
||||
Operator.NOT: "must_not",
|
||||
}[operation.operator]
|
||||
return rest.Filter(**{operator: args})
|
||||
|
||||
def visit_comparison(self, comparison: Comparison) -> rest.FieldCondition:
|
||||
from qdrant_client.http import models as rest
|
||||
|
||||
self._validate_func(comparison.comparator)
|
||||
attribute = self.metadata_key + "." + comparison.attribute
|
||||
if comparison.comparator == Comparator.EQ:
|
||||
return rest.FieldCondition(
|
||||
key=attribute, match=rest.MatchValue(value=comparison.value)
|
||||
)
|
||||
kwargs = {comparison.comparator.value: comparison.value}
|
||||
return rest.FieldCondition(key=attribute, range=rest.Range(**kwargs))
|
||||
|
||||
def visit_structured_query(
|
||||
self, structured_query: StructuredQuery
|
||||
) -> Tuple[str, dict]:
|
||||
try:
|
||||
from qdrant_client.http import models as rest
|
||||
except ImportError as e:
|
||||
raise ImportError(
|
||||
"Cannot import qdrant_client. Please install with `pip install "
|
||||
"qdrant-client`."
|
||||
) from e
|
||||
|
||||
if structured_query.filter is None:
|
||||
kwargs = {}
|
||||
else:
|
||||
filter = structured_query.filter.accept(self)
|
||||
if isinstance(filter, rest.FieldCondition):
|
||||
filter = rest.Filter(must=[filter])
|
||||
kwargs = {"filter": filter}
|
||||
return structured_query.query, kwargs
|
@@ -19,26 +19,12 @@ class WeaviateTranslator(Visitor):
|
||||
|
||||
allowed_comparators = [Comparator.EQ]
|
||||
|
||||
def _map_func(self, func: Union[Operator, Comparator]) -> str:
|
||||
def _format_func(self, func: Union[Operator, Comparator]) -> str:
|
||||
self._validate_func(func)
|
||||
# https://weaviate.io/developers/weaviate/api/graphql/filters
|
||||
map_dict = {Operator.AND: "And", Operator.OR: "Or", Comparator.EQ: "Equal"}
|
||||
return map_dict[func]
|
||||
|
||||
def _format_func(self, func: Union[Operator, Comparator]) -> str:
|
||||
if isinstance(func, Operator) and self.allowed_operators is not None:
|
||||
if func not in self.allowed_operators:
|
||||
raise ValueError(
|
||||
f"Received disallowed operator {func}. Allowed "
|
||||
f"comparators are {self.allowed_operators}"
|
||||
)
|
||||
if isinstance(func, Comparator) and self.allowed_comparators is not None:
|
||||
if func not in self.allowed_comparators:
|
||||
raise ValueError(
|
||||
f"Received disallowed comparator {func}. Allowed "
|
||||
f"comparators are {self.allowed_comparators}"
|
||||
)
|
||||
return self._map_func(func)
|
||||
|
||||
def visit_operation(self, operation: Operation) -> Dict:
|
||||
args = [arg.accept(self) for arg in operation.arguments]
|
||||
return {"operator": self._format_func(operation.operator), "operands": args}
|
||||
|
@@ -218,7 +218,7 @@ class Qdrant(VectorStore):
|
||||
Returns:
|
||||
List of Documents most similar to the query.
|
||||
"""
|
||||
results = self.similarity_search_with_score(query, k, filter)
|
||||
results = self.similarity_search_with_score(query, k, filter=filter)
|
||||
return list(map(itemgetter(0), results))
|
||||
|
||||
def similarity_search_with_score(
|
||||
@@ -245,7 +245,6 @@ class Qdrant(VectorStore):
|
||||
qdrant_filter = self._qdrant_filter_from_dict(filter)
|
||||
else:
|
||||
qdrant_filter = filter
|
||||
|
||||
results = self.client.search(
|
||||
collection_name=self.collection_name,
|
||||
query_vector=self._embed_query(query),
|
||||
|
Reference in New Issue
Block a user