community[patch]: LanceDB integration improvements/fixes (#16173)

Hi, I'm from the LanceDB team.

Improves LanceDB integration by making it easier to use - now you aren't
required to create tables manually and pass them in the constructor,
although that is still backward compatible.

Bug fix - pandas was being used even though it's not a dependency for
LanceDB or langchain

PS - this issue was raised a few months ago but lost traction. It is a
feature improvement for our users kindly review this , Thanks !
This commit is contained in:
Raghav Dixit
2024-02-19 13:22:02 -05:00
committed by GitHub
parent e92e96193f
commit 6c18f73ca5
4 changed files with 226 additions and 74 deletions

View File

@@ -12,6 +12,18 @@ class LanceDB(VectorStore):
"""`LanceDB` vector store.
To use, you should have ``lancedb`` python package installed.
You can install it with ``pip install lancedb``.
Args:
connection: LanceDB connection to use. If not provided, a new connection
will be created.
embedding: Embedding to use for the vectorstore.
vector_key: Key to use for the vector in the database. Defaults to ``vector``.
id_key: Key to use for the id in the database. Defaults to ``id``.
text_key: Key to use for the text in the database. Defaults to ``text``.
table_name: Name of the table to use. Defaults to ``vectorstore``.
Example:
.. code-block:: python
@@ -25,13 +37,14 @@ class LanceDB(VectorStore):
def __init__(
self,
connection: Any,
embedding: Embeddings,
connection: Optional[Any] = None,
embedding: Optional[Embeddings] = None,
vector_key: Optional[str] = "vector",
id_key: Optional[str] = "id",
text_key: Optional[str] = "text",
table_name: Optional[str] = "vectorstore",
):
"""Initialize with Lance DB connection"""
"""Initialize with Lance DB vectorstore"""
try:
import lancedb
except ImportError:
@@ -39,19 +52,28 @@ class LanceDB(VectorStore):
"Could not import lancedb python package. "
"Please install it with `pip install lancedb`."
)
if not isinstance(connection, lancedb.db.LanceTable):
raise ValueError(
"connection should be an instance of lancedb.db.LanceTable, ",
f"got {type(connection)}",
)
self._connection = connection
self.lancedb = lancedb
self._embedding = embedding
self._vector_key = vector_key
self._id_key = id_key
self._text_key = text_key
self._table_name = table_name
if self._embedding is None:
raise ValueError("embedding should be provided")
if connection is not None:
if not isinstance(connection, lancedb.db.LanceTable):
raise ValueError(
"connection should be an instance of lancedb.db.LanceTable, ",
f"got {type(connection)}",
)
self._connection = connection
else:
self._connection = self._init_table()
@property
def embeddings(self) -> Embeddings:
def embeddings(self) -> Optional[Embeddings]:
return self._embedding
def add_texts(
@@ -74,7 +96,7 @@ class LanceDB(VectorStore):
# Embed texts and create documents
docs = []
ids = ids or [str(uuid.uuid4()) for _ in texts]
embeddings = self._embedding.embed_documents(list(texts))
embeddings = self._embedding.embed_documents(list(texts)) # type: ignore
for idx, text in enumerate(texts):
embedding = embeddings[idx]
metadata = metadatas[idx] if metadatas else {}
@@ -86,7 +108,6 @@ class LanceDB(VectorStore):
**metadata,
}
)
self._connection.add(docs)
return ids
@@ -102,14 +123,23 @@ class LanceDB(VectorStore):
Returns:
List of documents most similar to the query.
"""
embedding = self._embedding.embed_query(query)
docs = self._connection.search(embedding).limit(k).to_df()
embedding = self._embedding.embed_query(query) # type: ignore
docs = (
self._connection.search(embedding, vector_column_name=self._vector_key)
.limit(k)
.to_arrow()
)
columns = docs.schema.names
return [
Document(
page_content=row[self._text_key],
metadata=row[docs.columns != self._text_key],
page_content=docs[self._text_key][idx].as_py(),
metadata={
col: docs[col][idx].as_py()
for col in columns
if col != self._text_key
},
)
for _, row in docs.iterrows()
for idx in range(len(docs))
]
@classmethod
@@ -134,3 +164,23 @@ class LanceDB(VectorStore):
instance.add_texts(texts, metadatas=metadatas, **kwargs)
return instance
def _init_table(self) -> Any:
import pyarrow as pa
schema = pa.schema(
[
pa.field(
self._vector_key,
pa.list_(
pa.float32(),
len(self.embeddings.embed_query("test")), # type: ignore
),
),
pa.field(self._id_key, pa.string()),
pa.field(self._text_key, pa.string()),
]
)
db = self.lancedb.connect("/tmp/lancedb")
tbl = db.create_table(self._table_name, schema=schema, mode="overwrite")
return tbl