mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-08 22:42:05 +00:00
community[patch]: LanceDB integration improvements/fixes (#16173)
Hi, I'm from the LanceDB team. Improves LanceDB integration by making it easier to use - now you aren't required to create tables manually and pass them in the constructor, although that is still backward compatible. Bug fix - pandas was being used even though it's not a dependency for LanceDB or langchain PS - this issue was raised a few months ago but lost traction. It is a feature improvement for our users kindly review this , Thanks !
This commit is contained in:
@@ -12,6 +12,18 @@ class LanceDB(VectorStore):
|
||||
"""`LanceDB` vector store.
|
||||
|
||||
To use, you should have ``lancedb`` python package installed.
|
||||
You can install it with ``pip install lancedb``.
|
||||
|
||||
Args:
|
||||
connection: LanceDB connection to use. If not provided, a new connection
|
||||
will be created.
|
||||
embedding: Embedding to use for the vectorstore.
|
||||
vector_key: Key to use for the vector in the database. Defaults to ``vector``.
|
||||
id_key: Key to use for the id in the database. Defaults to ``id``.
|
||||
text_key: Key to use for the text in the database. Defaults to ``text``.
|
||||
table_name: Name of the table to use. Defaults to ``vectorstore``.
|
||||
|
||||
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
@@ -25,13 +37,14 @@ class LanceDB(VectorStore):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
connection: Any,
|
||||
embedding: Embeddings,
|
||||
connection: Optional[Any] = None,
|
||||
embedding: Optional[Embeddings] = None,
|
||||
vector_key: Optional[str] = "vector",
|
||||
id_key: Optional[str] = "id",
|
||||
text_key: Optional[str] = "text",
|
||||
table_name: Optional[str] = "vectorstore",
|
||||
):
|
||||
"""Initialize with Lance DB connection"""
|
||||
"""Initialize with Lance DB vectorstore"""
|
||||
try:
|
||||
import lancedb
|
||||
except ImportError:
|
||||
@@ -39,19 +52,28 @@ class LanceDB(VectorStore):
|
||||
"Could not import lancedb python package. "
|
||||
"Please install it with `pip install lancedb`."
|
||||
)
|
||||
if not isinstance(connection, lancedb.db.LanceTable):
|
||||
raise ValueError(
|
||||
"connection should be an instance of lancedb.db.LanceTable, ",
|
||||
f"got {type(connection)}",
|
||||
)
|
||||
self._connection = connection
|
||||
self.lancedb = lancedb
|
||||
self._embedding = embedding
|
||||
self._vector_key = vector_key
|
||||
self._id_key = id_key
|
||||
self._text_key = text_key
|
||||
self._table_name = table_name
|
||||
|
||||
if self._embedding is None:
|
||||
raise ValueError("embedding should be provided")
|
||||
|
||||
if connection is not None:
|
||||
if not isinstance(connection, lancedb.db.LanceTable):
|
||||
raise ValueError(
|
||||
"connection should be an instance of lancedb.db.LanceTable, ",
|
||||
f"got {type(connection)}",
|
||||
)
|
||||
self._connection = connection
|
||||
else:
|
||||
self._connection = self._init_table()
|
||||
|
||||
@property
|
||||
def embeddings(self) -> Embeddings:
|
||||
def embeddings(self) -> Optional[Embeddings]:
|
||||
return self._embedding
|
||||
|
||||
def add_texts(
|
||||
@@ -74,7 +96,7 @@ class LanceDB(VectorStore):
|
||||
# Embed texts and create documents
|
||||
docs = []
|
||||
ids = ids or [str(uuid.uuid4()) for _ in texts]
|
||||
embeddings = self._embedding.embed_documents(list(texts))
|
||||
embeddings = self._embedding.embed_documents(list(texts)) # type: ignore
|
||||
for idx, text in enumerate(texts):
|
||||
embedding = embeddings[idx]
|
||||
metadata = metadatas[idx] if metadatas else {}
|
||||
@@ -86,7 +108,6 @@ class LanceDB(VectorStore):
|
||||
**metadata,
|
||||
}
|
||||
)
|
||||
|
||||
self._connection.add(docs)
|
||||
return ids
|
||||
|
||||
@@ -102,14 +123,23 @@ class LanceDB(VectorStore):
|
||||
Returns:
|
||||
List of documents most similar to the query.
|
||||
"""
|
||||
embedding = self._embedding.embed_query(query)
|
||||
docs = self._connection.search(embedding).limit(k).to_df()
|
||||
embedding = self._embedding.embed_query(query) # type: ignore
|
||||
docs = (
|
||||
self._connection.search(embedding, vector_column_name=self._vector_key)
|
||||
.limit(k)
|
||||
.to_arrow()
|
||||
)
|
||||
columns = docs.schema.names
|
||||
return [
|
||||
Document(
|
||||
page_content=row[self._text_key],
|
||||
metadata=row[docs.columns != self._text_key],
|
||||
page_content=docs[self._text_key][idx].as_py(),
|
||||
metadata={
|
||||
col: docs[col][idx].as_py()
|
||||
for col in columns
|
||||
if col != self._text_key
|
||||
},
|
||||
)
|
||||
for _, row in docs.iterrows()
|
||||
for idx in range(len(docs))
|
||||
]
|
||||
|
||||
@classmethod
|
||||
@@ -134,3 +164,23 @@ class LanceDB(VectorStore):
|
||||
instance.add_texts(texts, metadatas=metadatas, **kwargs)
|
||||
|
||||
return instance
|
||||
|
||||
def _init_table(self) -> Any:
|
||||
import pyarrow as pa
|
||||
|
||||
schema = pa.schema(
|
||||
[
|
||||
pa.field(
|
||||
self._vector_key,
|
||||
pa.list_(
|
||||
pa.float32(),
|
||||
len(self.embeddings.embed_query("test")), # type: ignore
|
||||
),
|
||||
),
|
||||
pa.field(self._id_key, pa.string()),
|
||||
pa.field(self._text_key, pa.string()),
|
||||
]
|
||||
)
|
||||
db = self.lancedb.connect("/tmp/lancedb")
|
||||
tbl = db.create_table(self._table_name, schema=schema, mode="overwrite")
|
||||
return tbl
|
||||
|
Reference in New Issue
Block a user