mirror of
https://github.com/hwchase17/langchain.git
synced 2025-07-06 13:18:12 +00:00
Adds "NIN" metadata filter for pgvector to all checking for set absence (#14205)
This PR adds support for metadata filters of the form: `{"filter": {"key": { "NIN" : ["list", "of", "values"]}}}` "IN" is already supported, so this is a quick & related update to add "NIN"
This commit is contained in:
parent
20d2b4a6ba
commit
7c2ef06136
@ -434,16 +434,24 @@ class PGVector(VectorStore):
|
||||
|
||||
if filter is not None:
|
||||
filter_clauses = []
|
||||
IN, NIN = "in", "nin"
|
||||
for key, value in filter.items():
|
||||
IN = "in"
|
||||
if isinstance(value, dict) and IN in map(str.lower, value):
|
||||
if isinstance(value, dict):
|
||||
value_case_insensitive = {
|
||||
k.lower(): v for k, v in value.items()
|
||||
}
|
||||
filter_by_metadata = self.EmbeddingStore.cmetadata[
|
||||
key
|
||||
].astext.in_(value_case_insensitive[IN])
|
||||
filter_clauses.append(filter_by_metadata)
|
||||
if IN in map(str.lower, value):
|
||||
filter_by_metadata = self.EmbeddingStore.cmetadata[
|
||||
key
|
||||
].astext.in_(value_case_insensitive[IN])
|
||||
elif NIN in map(str.lower, value):
|
||||
filter_by_metadata = self.EmbeddingStore.cmetadata[
|
||||
key
|
||||
].astext.not_in(value_case_insensitive[NIN])
|
||||
else:
|
||||
filter_by_metadata = None
|
||||
if filter_by_metadata is not None:
|
||||
filter_clauses.append(filter_by_metadata)
|
||||
else:
|
||||
filter_by_metadata = self.EmbeddingStore.cmetadata[
|
||||
key
|
||||
|
@ -17,7 +17,6 @@ CONNECTION_STRING = PGVector.connection_string_from_db_params(
|
||||
password=os.environ.get("TEST_PGVECTOR_PASSWORD", "postgres"),
|
||||
)
|
||||
|
||||
|
||||
ADA_TOKEN_COUNT = 1536
|
||||
|
||||
|
||||
@ -186,6 +185,27 @@ def test_pgvector_with_filter_in_set() -> None:
|
||||
]
|
||||
|
||||
|
||||
def test_pgvector_with_filter_nin_set() -> None:
|
||||
"""Test end to end construction and search."""
|
||||
texts = ["foo", "bar", "baz"]
|
||||
metadatas = [{"page": str(i)} for i in range(len(texts))]
|
||||
docsearch = PGVector.from_texts(
|
||||
texts=texts,
|
||||
collection_name="test_collection_filter",
|
||||
embedding=FakeEmbeddingsWithAdaDimension(),
|
||||
metadatas=metadatas,
|
||||
connection_string=CONNECTION_STRING,
|
||||
pre_delete_collection=True,
|
||||
)
|
||||
output = docsearch.similarity_search_with_score(
|
||||
"foo", k=2, filter={"page": {"NIN": ["1"]}}
|
||||
)
|
||||
assert output == [
|
||||
(Document(page_content="foo", metadata={"page": "0"}), 0.0),
|
||||
(Document(page_content="baz", metadata={"page": "2"}), 0.0013003906671379406),
|
||||
]
|
||||
|
||||
|
||||
def test_pgvector_delete_docs() -> None:
|
||||
"""Add and delete documents."""
|
||||
texts = ["foo", "bar", "baz"]
|
||||
|
Loading…
Reference in New Issue
Block a user