mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-06 15:48:39 +00:00
update notebooks (#275)
This commit is contained in:
parent
3c1c7ba672
commit
834b391792
@ -24,16 +24,17 @@
|
||||
"\n",
|
||||
"```bash\n",
|
||||
"echo \"Hello World\"\n",
|
||||
"```\u001b[0m\n",
|
||||
"Answer: \u001b[33;1m\u001b[1;3m{'success': True, 'outputs': ['Hello World\\n']}\u001b[0m\n",
|
||||
"```\u001b[0m['```bash', 'echo \"Hello World\"', '```']\n",
|
||||
"\n",
|
||||
"Answer: \u001b[33;1m\u001b[1;3mHello World\n",
|
||||
"\u001b[0m\n",
|
||||
"\u001b[1m> Finished LLMBashChain chain.\u001b[0m\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'commands': ['echo \"Hello World\"'],\n",
|
||||
" 'output': {'success': True, 'outputs': ['Hello World\\n']}}"
|
||||
"'Hello World\\n'"
|
||||
]
|
||||
},
|
||||
"execution_count": 2,
|
||||
@ -42,7 +43,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain.chains.llm_bash.base import LLMBashChain\n",
|
||||
"from langchain.chains import LLMBashChain\n",
|
||||
"from langchain.llms import OpenAI\n",
|
||||
"\n",
|
||||
"llm = OpenAI(temperature=0)\n",
|
||||
@ -78,9 +79,9 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.6"
|
||||
"version": "3.10.8"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
}
|
||||
|
@ -115,7 +115,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.1"
|
||||
"version": "3.10.8"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
@ -85,7 +85,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.8.7"
|
||||
"version": "3.10.8"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
130
docs/examples/chains/transformation.ipynb
Normal file
130
docs/examples/chains/transformation.ipynb
Normal file
@ -0,0 +1,130 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "872bb8b5",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Transformation Chain\n",
|
||||
"\n",
|
||||
"This notebook showcases using a generic transformation chain.\n",
|
||||
"\n",
|
||||
"As an example, we will create a dummy transformation that takes in a super long text, filters the text to only the first 3 paragraphs, and then passes that into an LLMChain to summarize those."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "bbbb4330",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.chains import TransformChain, LLMChain, SimpleSequentialChain\n",
|
||||
"from langchain.llms import OpenAI\n",
|
||||
"from langchain.prompts import PromptTemplate"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"id": "8ae5937c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"with open('../state_of_the_union.txt') as f:\n",
|
||||
" state_of_the_union = f.read()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "98739592",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def transform_func(inputs: dict) -> dict:\n",
|
||||
" text = inputs[\"text\"]\n",
|
||||
" shortened_text = \"\\n\\n\".join(text.split(\"\\n\\n\")[:3])\n",
|
||||
" return {\"output_text\": shortened_text}\n",
|
||||
"\n",
|
||||
"transform_chain = TransformChain(input_variables=[\"text\"], output_variables=[\"output_text\"], transform=transform_func)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "e9397934",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"template = \"\"\"Summarize this text:\n",
|
||||
"\n",
|
||||
"{output_text}\n",
|
||||
"\n",
|
||||
"Summary:\"\"\"\n",
|
||||
"prompt = PromptTemplate(input_variables=[\"output_text\"], template=template)\n",
|
||||
"llm_chain = LLMChain(llm=OpenAI(), prompt=prompt)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "06f51f17",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"sequential_chain = SimpleSequentialChain(chains=[transform_chain, llm_chain])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"id": "f7caa1ee",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"' This speech addresses the American people and acknowledges the difficulties of last year due to COVID-19. It emphasizes the importance of coming together regardless of political affiliation and encourages a sense of unity as Americans.'"
|
||||
]
|
||||
},
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"sequential_chain.run(state_of_the_union)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "e3ca6409",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.8"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
@ -10,6 +10,7 @@ from langchain.chains.qa_with_sources.base import QAWithSourcesChain
|
||||
from langchain.chains.qa_with_sources.vector_db import VectorDBQAWithSourcesChain
|
||||
from langchain.chains.sequential import SequentialChain, SimpleSequentialChain
|
||||
from langchain.chains.sql_database.base import SQLDatabaseChain
|
||||
from langchain.chains.transform import TransformChain
|
||||
from langchain.chains.vector_db_qa.base import VectorDBQA
|
||||
|
||||
__all__ = [
|
||||
@ -27,4 +28,5 @@ __all__ = [
|
||||
"VectorDBQAWithSourcesChain",
|
||||
"APIChain",
|
||||
"LLMRequestsChain",
|
||||
"TransformChain",
|
||||
]
|
||||
|
Loading…
Reference in New Issue
Block a user