mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-24 15:43:54 +00:00
community[minor]: Add hybrid search to Cassandra VectorStore (#20286)
Only supported by Astra DB at the moment. **Twitter handle:** cbornet_
This commit is contained in:
parent
d2d01370bc
commit
8f0b5687a3
@ -57,17 +57,12 @@ class Cassandra(VectorStore):
|
||||
keyspace: Cassandra key space.
|
||||
table_name: Cassandra table.
|
||||
ttl_seconds: Optional time-to-live for the added texts.
|
||||
body_index_options: Optional options used to create the body index.
|
||||
Eg. body_index_options = [cassio.table.cql.STANDARD_ANALYZER]
|
||||
"""
|
||||
|
||||
_embedding_dimension: Union[int, None]
|
||||
|
||||
@staticmethod
|
||||
def _filter_to_metadata(filter_dict: Optional[Dict[str, str]]) -> Dict[str, Any]:
|
||||
if filter_dict is None:
|
||||
return {}
|
||||
else:
|
||||
return filter_dict
|
||||
|
||||
def _get_embedding_dimension(self) -> int:
|
||||
if self._embedding_dimension is None:
|
||||
self._embedding_dimension = len(
|
||||
@ -82,6 +77,8 @@ class Cassandra(VectorStore):
|
||||
keyspace: str,
|
||||
table_name: str,
|
||||
ttl_seconds: Optional[int] = None,
|
||||
*,
|
||||
body_index_options: Optional[List[Tuple[str, Any]]] = None,
|
||||
) -> None:
|
||||
try:
|
||||
from cassio.table import MetadataVectorCassandraTable
|
||||
@ -99,6 +96,10 @@ class Cassandra(VectorStore):
|
||||
#
|
||||
self._embedding_dimension = None
|
||||
#
|
||||
kwargs = {}
|
||||
if body_index_options is not None:
|
||||
kwargs["body_index_options"] = body_index_options
|
||||
|
||||
self.table = MetadataVectorCassandraTable(
|
||||
session=session,
|
||||
keyspace=keyspace,
|
||||
@ -106,6 +107,7 @@ class Cassandra(VectorStore):
|
||||
vector_dimension=self._get_embedding_dimension(),
|
||||
metadata_indexing="all",
|
||||
primary_key_type="TEXT",
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
@property
|
||||
@ -212,22 +214,30 @@ class Cassandra(VectorStore):
|
||||
embedding: List[float],
|
||||
k: int = 4,
|
||||
filter: Optional[Dict[str, str]] = None,
|
||||
body_search: Optional[Union[str, List[str]]] = None,
|
||||
) -> List[Tuple[Document, float, str]]:
|
||||
"""Return docs most similar to embedding vector.
|
||||
|
||||
Args:
|
||||
embedding (str): Embedding to look up documents similar to.
|
||||
k (int): Number of Documents to return. Defaults to 4.
|
||||
embedding: Embedding to look up documents similar to.
|
||||
k: Number of Documents to return. Defaults to 4.
|
||||
filter: Filter on the metadata to apply.
|
||||
body_search: Document textual search terms to apply.
|
||||
Only supported by Astra DB at the moment.
|
||||
Returns:
|
||||
List of (Document, score, id), the most similar to the query vector.
|
||||
"""
|
||||
search_metadata = self._filter_to_metadata(filter)
|
||||
kwargs: Dict[str, Any] = {}
|
||||
if filter is not None:
|
||||
kwargs["metadata"] = filter
|
||||
if body_search is not None:
|
||||
kwargs["body_search"] = body_search
|
||||
#
|
||||
hits = self.table.metric_ann_search(
|
||||
vector=embedding,
|
||||
n=k,
|
||||
metric="cos",
|
||||
metadata=search_metadata,
|
||||
**kwargs,
|
||||
)
|
||||
# We stick to 'cos' distance as it can be normalized on a 0-1 axis
|
||||
# (1=most relevant), as required by this class' contract.
|
||||
@ -248,12 +258,14 @@ class Cassandra(VectorStore):
|
||||
query: str,
|
||||
k: int = 4,
|
||||
filter: Optional[Dict[str, str]] = None,
|
||||
body_search: Optional[Union[str, List[str]]] = None,
|
||||
) -> List[Tuple[Document, float, str]]:
|
||||
embedding_vector = self.embedding.embed_query(query)
|
||||
return self.similarity_search_with_score_id_by_vector(
|
||||
embedding=embedding_vector,
|
||||
k=k,
|
||||
filter=filter,
|
||||
body_search=body_search,
|
||||
)
|
||||
|
||||
# id-unaware search facilities
|
||||
@ -262,12 +274,16 @@ class Cassandra(VectorStore):
|
||||
embedding: List[float],
|
||||
k: int = 4,
|
||||
filter: Optional[Dict[str, str]] = None,
|
||||
body_search: Optional[Union[str, List[str]]] = None,
|
||||
) -> List[Tuple[Document, float]]:
|
||||
"""Return docs most similar to embedding vector.
|
||||
|
||||
Args:
|
||||
embedding (str): Embedding to look up documents similar to.
|
||||
k (int): Number of Documents to return. Defaults to 4.
|
||||
embedding: Embedding to look up documents similar to.
|
||||
k: Number of Documents to return. Defaults to 4.
|
||||
filter: Filter on the metadata to apply.
|
||||
body_search: Document textual search terms to apply.
|
||||
Only supported by Astra DB at the moment.
|
||||
Returns:
|
||||
List of (Document, score), the most similar to the query vector.
|
||||
"""
|
||||
@ -277,6 +293,7 @@ class Cassandra(VectorStore):
|
||||
embedding=embedding,
|
||||
k=k,
|
||||
filter=filter,
|
||||
body_search=body_search,
|
||||
)
|
||||
]
|
||||
|
||||
@ -285,6 +302,7 @@ class Cassandra(VectorStore):
|
||||
query: str,
|
||||
k: int = 4,
|
||||
filter: Optional[Dict[str, str]] = None,
|
||||
body_search: Optional[Union[str, List[str]]] = None,
|
||||
**kwargs: Any,
|
||||
) -> List[Document]:
|
||||
embedding_vector = self.embedding.embed_query(query)
|
||||
@ -292,6 +310,7 @@ class Cassandra(VectorStore):
|
||||
embedding_vector,
|
||||
k,
|
||||
filter=filter,
|
||||
body_search=body_search,
|
||||
)
|
||||
|
||||
def similarity_search_by_vector(
|
||||
@ -299,6 +318,7 @@ class Cassandra(VectorStore):
|
||||
embedding: List[float],
|
||||
k: int = 4,
|
||||
filter: Optional[Dict[str, str]] = None,
|
||||
body_search: Optional[Union[str, List[str]]] = None,
|
||||
**kwargs: Any,
|
||||
) -> List[Document]:
|
||||
return [
|
||||
@ -307,6 +327,7 @@ class Cassandra(VectorStore):
|
||||
embedding,
|
||||
k,
|
||||
filter=filter,
|
||||
body_search=body_search,
|
||||
)
|
||||
]
|
||||
|
||||
@ -315,12 +336,14 @@ class Cassandra(VectorStore):
|
||||
query: str,
|
||||
k: int = 4,
|
||||
filter: Optional[Dict[str, str]] = None,
|
||||
body_search: Optional[Union[str, List[str]]] = None,
|
||||
) -> List[Tuple[Document, float]]:
|
||||
embedding_vector = self.embedding.embed_query(query)
|
||||
return self.similarity_search_with_score_by_vector(
|
||||
embedding_vector,
|
||||
k,
|
||||
filter=filter,
|
||||
body_search=body_search,
|
||||
)
|
||||
|
||||
def max_marginal_relevance_search_by_vector(
|
||||
@ -330,6 +353,7 @@ class Cassandra(VectorStore):
|
||||
fetch_k: int = 20,
|
||||
lambda_mult: float = 0.5,
|
||||
filter: Optional[Dict[str, str]] = None,
|
||||
body_search: Optional[Union[str, List[str]]] = None,
|
||||
**kwargs: Any,
|
||||
) -> List[Document]:
|
||||
"""Return docs selected using the maximal marginal relevance.
|
||||
@ -337,22 +361,31 @@ class Cassandra(VectorStore):
|
||||
among selected documents.
|
||||
Args:
|
||||
embedding: Embedding to look up documents similar to.
|
||||
k: Number of Documents to return.
|
||||
k: Number of Documents to return. Defaults to 4.
|
||||
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
|
||||
Defaults to 20.
|
||||
lambda_mult: Number between 0 and 1 that determines the degree
|
||||
of diversity among the results with 0 corresponding to maximum
|
||||
diversity and 1 to minimum diversity.
|
||||
Defaults to 0.5.
|
||||
filter: Filter on the metadata to apply.
|
||||
body_search: Document textual search terms to apply.
|
||||
Only supported by Astra DB at the moment.
|
||||
Returns:
|
||||
List of Documents selected by maximal marginal relevance.
|
||||
"""
|
||||
search_metadata = self._filter_to_metadata(filter)
|
||||
_kwargs: Dict[str, Any] = {}
|
||||
if filter is not None:
|
||||
_kwargs["metadata"] = filter
|
||||
if body_search is not None:
|
||||
_kwargs["body_search"] = body_search
|
||||
|
||||
prefetch_hits = list(
|
||||
self.table.metric_ann_search(
|
||||
vector=embedding,
|
||||
n=fetch_k,
|
||||
metric="cos",
|
||||
metadata=search_metadata,
|
||||
**_kwargs,
|
||||
)
|
||||
)
|
||||
# let the mmr utility pick the *indices* in the above array
|
||||
@ -382,6 +415,7 @@ class Cassandra(VectorStore):
|
||||
fetch_k: int = 20,
|
||||
lambda_mult: float = 0.5,
|
||||
filter: Optional[Dict[str, str]] = None,
|
||||
body_search: Optional[Union[str, List[str]]] = None,
|
||||
**kwargs: Any,
|
||||
) -> List[Document]:
|
||||
"""Return docs selected using the maximal marginal relevance.
|
||||
@ -389,12 +423,16 @@ class Cassandra(VectorStore):
|
||||
among selected documents.
|
||||
Args:
|
||||
query: Text to look up documents similar to.
|
||||
k: Number of Documents to return.
|
||||
k: Number of Documents to return. Defaults to 4.
|
||||
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
|
||||
Defaults to 20.
|
||||
lambda_mult: Number between 0 and 1 that determines the degree
|
||||
of diversity among the results with 0 corresponding to maximum
|
||||
diversity and 1 to minimum diversity.
|
||||
Defaults to 0.5.
|
||||
filter: Filter on the metadata to apply.
|
||||
body_search: Document textual search terms to apply.
|
||||
Only supported by Astra DB at the moment.
|
||||
Returns:
|
||||
List of Documents selected by maximal marginal relevance.
|
||||
"""
|
||||
@ -405,6 +443,7 @@ class Cassandra(VectorStore):
|
||||
fetch_k,
|
||||
lambda_mult=lambda_mult,
|
||||
filter=filter,
|
||||
body_search=body_search,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -420,6 +459,7 @@ class Cassandra(VectorStore):
|
||||
ids: Optional[List[str]] = None,
|
||||
batch_size: int = 16,
|
||||
ttl_seconds: Optional[int] = None,
|
||||
body_index_options: Optional[List[Tuple[str, Any]]] = None,
|
||||
**kwargs: Any,
|
||||
) -> CVST:
|
||||
"""Create a Cassandra vectorstore from raw texts.
|
||||
@ -435,6 +475,8 @@ class Cassandra(VectorStore):
|
||||
batch_size: Number of concurrent requests to send to the server.
|
||||
Defaults to 16.
|
||||
ttl_seconds: Optional time-to-live for the added texts.
|
||||
body_index_options: Optional options used to create the body index.
|
||||
Eg. body_index_options = [cassio.table.cql.STANDARD_ANALYZER]
|
||||
|
||||
Returns:
|
||||
a Cassandra vectorstore.
|
||||
@ -451,6 +493,7 @@ class Cassandra(VectorStore):
|
||||
keyspace=keyspace,
|
||||
table_name=table_name,
|
||||
ttl_seconds=ttl_seconds,
|
||||
body_index_options=body_index_options,
|
||||
)
|
||||
store.add_texts(
|
||||
texts=texts, metadatas=metadatas, ids=ids, batch_size=batch_size
|
||||
@ -469,6 +512,7 @@ class Cassandra(VectorStore):
|
||||
ids: Optional[List[str]] = None,
|
||||
batch_size: int = 16,
|
||||
ttl_seconds: Optional[int] = None,
|
||||
body_index_options: Optional[List[Tuple[str, Any]]] = None,
|
||||
**kwargs: Any,
|
||||
) -> CVST:
|
||||
"""Create a Cassandra vectorstore from a document list.
|
||||
@ -483,6 +527,8 @@ class Cassandra(VectorStore):
|
||||
batch_size: Number of concurrent requests to send to the server.
|
||||
Defaults to 16.
|
||||
ttl_seconds: Optional time-to-live for the added documents.
|
||||
body_index_options: Optional options used to create the body index.
|
||||
Eg. body_index_options = [cassio.table.cql.STANDARD_ANALYZER]
|
||||
|
||||
Returns:
|
||||
a Cassandra vectorstore.
|
||||
@ -499,5 +545,6 @@ class Cassandra(VectorStore):
|
||||
ids=ids,
|
||||
batch_size=batch_size,
|
||||
ttl_seconds=ttl_seconds,
|
||||
body_index_options=body_index_options,
|
||||
**kwargs,
|
||||
)
|
||||
|
Loading…
Reference in New Issue
Block a user