mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-18 12:58:59 +00:00
Harrison/llm saving (#331)
Co-authored-by: Akash Samant <70665700+asamant21@users.noreply.github.com>
This commit is contained in:
parent
595cc1ae1a
commit
9bb7195085
@ -1,7 +1,19 @@
|
||||
"""Wrappers on top of large language models APIs."""
|
||||
from typing import Dict, Type
|
||||
|
||||
from langchain.llms.ai21 import AI21
|
||||
from langchain.llms.base import LLM
|
||||
from langchain.llms.cohere import Cohere
|
||||
from langchain.llms.huggingface_hub import HuggingFaceHub
|
||||
from langchain.llms.nlpcloud import NLPCloud
|
||||
from langchain.llms.openai import OpenAI
|
||||
|
||||
__all__ = ["Cohere", "NLPCloud", "OpenAI", "HuggingFaceHub"]
|
||||
__all__ = ["Cohere", "NLPCloud", "OpenAI", "HuggingFaceHub", "AI21"]
|
||||
|
||||
type_to_cls_dict: Dict[str, Type[LLM]] = {
|
||||
"ai21": AI21,
|
||||
"cohere": Cohere,
|
||||
"huggingface_hub": HuggingFaceHub,
|
||||
"nlpcloud": NLPCloud,
|
||||
"openai": OpenAI,
|
||||
}
|
||||
|
@ -19,7 +19,7 @@ class AI21PenaltyData(BaseModel):
|
||||
applyToEmojis: bool = True
|
||||
|
||||
|
||||
class AI21(BaseModel, LLM):
|
||||
class AI21(LLM, BaseModel):
|
||||
"""Wrapper around AI21 large language models.
|
||||
|
||||
To use, you should have the environment variable ``AI21_API_KEY``
|
||||
@ -96,6 +96,11 @@ class AI21(BaseModel, LLM):
|
||||
"""Get the identifying parameters."""
|
||||
return {**{"model": self.model}, **self._default_params}
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
"""Return type of llm."""
|
||||
return "ai21"
|
||||
|
||||
def __call__(self, prompt: str, stop: Optional[List[str]] = None) -> str:
|
||||
"""Call out to AI21's complete endpoint.
|
||||
|
||||
|
@ -1,6 +1,11 @@
|
||||
"""Base interface for large language models to expose."""
|
||||
import json
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Any, List, Mapping, NamedTuple, Optional
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Mapping, NamedTuple, Optional, Union
|
||||
|
||||
import yaml
|
||||
from pydantic import BaseModel, Extra
|
||||
|
||||
|
||||
class Generation(NamedTuple):
|
||||
@ -21,9 +26,14 @@ class LLMResult(NamedTuple):
|
||||
"""For arbitrary LLM provider specific output."""
|
||||
|
||||
|
||||
class LLM(ABC):
|
||||
class LLM(BaseModel, ABC):
|
||||
"""LLM wrapper should take in a prompt and return a string."""
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
extra = Extra.forbid
|
||||
|
||||
def generate(
|
||||
self, prompts: List[str], stop: Optional[List[str]] = None
|
||||
) -> LLMResult:
|
||||
@ -68,3 +78,46 @@ class LLM(ABC):
|
||||
"""Get a string representation of the object for printing."""
|
||||
cls_name = f"\033[1m{self.__class__.__name__}\033[0m"
|
||||
return f"{cls_name}\nParams: {self._identifying_params}"
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
def _llm_type(self) -> str:
|
||||
"""Return type of llm."""
|
||||
|
||||
def _llm_dict(self) -> Dict:
|
||||
"""Return a dictionary of the prompt."""
|
||||
starter_dict = dict(self._identifying_params)
|
||||
starter_dict["_type"] = self._llm_type
|
||||
return starter_dict
|
||||
|
||||
def save(self, file_path: Union[Path, str]) -> None:
|
||||
"""Save the LLM.
|
||||
|
||||
Args:
|
||||
file_path: Path to file to save the LLM to.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
llm.save(file_path="path/llm.yaml")
|
||||
"""
|
||||
# Convert file to Path object.
|
||||
if isinstance(file_path, str):
|
||||
save_path = Path(file_path)
|
||||
else:
|
||||
save_path = file_path
|
||||
|
||||
directory_path = save_path.parent
|
||||
directory_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Fetch dictionary to save
|
||||
prompt_dict = self._llm_dict()
|
||||
|
||||
if save_path.suffix == ".json":
|
||||
with open(file_path, "w") as f:
|
||||
json.dump(prompt_dict, f, indent=4)
|
||||
elif save_path.suffix == ".yaml":
|
||||
with open(file_path, "w") as f:
|
||||
yaml.dump(prompt_dict, f, default_flow_style=False)
|
||||
else:
|
||||
raise ValueError(f"{save_path} must be json or yaml")
|
||||
|
@ -85,6 +85,11 @@ class Cohere(LLM, BaseModel):
|
||||
"""Get the identifying parameters."""
|
||||
return {**{"model": self.model}, **self._default_params}
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
"""Return type of llm."""
|
||||
return "cohere"
|
||||
|
||||
def __call__(self, prompt: str, stop: Optional[List[str]] = None) -> str:
|
||||
"""Call out to Cohere's generate endpoint.
|
||||
|
||||
|
@ -74,7 +74,15 @@ class HuggingFaceHub(LLM, BaseModel):
|
||||
def _identifying_params(self) -> Mapping[str, Any]:
|
||||
"""Get the identifying parameters."""
|
||||
_model_kwargs = self.model_kwargs or {}
|
||||
return {**{"repo_id": self.repo_id}, **_model_kwargs}
|
||||
return {
|
||||
**{"repo_id": self.repo_id, "task": self.task},
|
||||
**{"model_kwargs": _model_kwargs},
|
||||
}
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
"""Return type of llm."""
|
||||
return "huggingface_hub"
|
||||
|
||||
def __call__(self, prompt: str, stop: Optional[List[str]] = None) -> str:
|
||||
"""Call out to HuggingFace Hub's inference endpoint.
|
||||
|
42
langchain/llms/loading.py
Normal file
42
langchain/llms/loading.py
Normal file
@ -0,0 +1,42 @@
|
||||
"""Base interface for loading large language models apis."""
|
||||
import json
|
||||
from pathlib import Path
|
||||
from typing import Union
|
||||
|
||||
import yaml
|
||||
|
||||
from langchain.llms import type_to_cls_dict
|
||||
from langchain.llms.base import LLM
|
||||
|
||||
|
||||
def load_llm_from_config(config: dict) -> LLM:
|
||||
"""Load LLM from Config Dict."""
|
||||
if "_type" not in config:
|
||||
raise ValueError("Must specify an LLM Type in config")
|
||||
config_type = config.pop("_type")
|
||||
|
||||
if config_type not in type_to_cls_dict:
|
||||
raise ValueError(f"Loading {config_type} LLM not supported")
|
||||
|
||||
llm_cls = type_to_cls_dict[config_type]
|
||||
return llm_cls(**config)
|
||||
|
||||
|
||||
def load_llm(file: Union[str, Path]) -> LLM:
|
||||
"""Load LLM from file."""
|
||||
# Convert file to Path object.
|
||||
if isinstance(file, str):
|
||||
file_path = Path(file)
|
||||
else:
|
||||
file_path = file
|
||||
# Load from either json or yaml.
|
||||
if file_path.suffix == ".json":
|
||||
with open(file_path) as f:
|
||||
config = json.load(f)
|
||||
elif file_path.suffix == ".yaml":
|
||||
with open(file_path, "r") as f:
|
||||
config = yaml.safe_load(f)
|
||||
else:
|
||||
raise ValueError("File type must be json or yaml")
|
||||
# Load the LLM from the config now.
|
||||
return load_llm_from_config(config)
|
@ -37,6 +37,11 @@ class ManifestWrapper(LLM, BaseModel):
|
||||
kwargs = self.llm_kwargs or {}
|
||||
return {**self.client.client.get_model_params(), **kwargs}
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
"""Return type of llm."""
|
||||
return "manifest"
|
||||
|
||||
def __call__(self, prompt: str, stop: Optional[List[str]] = None) -> str:
|
||||
"""Call out to LLM through Manifest."""
|
||||
if stop is not None and len(stop) != 1:
|
||||
|
@ -106,6 +106,11 @@ class NLPCloud(LLM, BaseModel):
|
||||
"""Get the identifying parameters."""
|
||||
return {**{"model_name": self.model_name}, **self._default_params}
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
"""Return type of llm."""
|
||||
return "nlpcloud"
|
||||
|
||||
def __call__(self, prompt: str, stop: Optional[List[str]] = None) -> str:
|
||||
"""Call out to NLPCloud's create endpoint.
|
||||
|
||||
|
@ -142,7 +142,12 @@ class OpenAI(LLM, BaseModel):
|
||||
@property
|
||||
def _identifying_params(self) -> Mapping[str, Any]:
|
||||
"""Get the identifying parameters."""
|
||||
return {**{"model": self.model_name}, **self._default_params}
|
||||
return {**{"model_name": self.model_name}, **self._default_params}
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
"""Return type of llm."""
|
||||
return "openai"
|
||||
|
||||
def __call__(self, prompt: str, stop: Optional[List[str]] = None) -> str:
|
||||
"""Call out to OpenAI's create endpoint.
|
||||
|
@ -1,6 +1,9 @@
|
||||
"""Test AI21 API wrapper."""
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
from langchain.llms.ai21 import AI21
|
||||
from langchain.llms.loading import load_llm
|
||||
|
||||
|
||||
def test_ai21_call() -> None:
|
||||
@ -8,3 +11,11 @@ def test_ai21_call() -> None:
|
||||
llm = AI21(maxTokens=10)
|
||||
output = llm("Say foo:")
|
||||
assert isinstance(output, str)
|
||||
|
||||
|
||||
def test_saving_loading_llm(tmp_path: Path) -> None:
|
||||
"""Test saving/loading an AI21 LLM."""
|
||||
llm = AI21(maxTokens=10)
|
||||
llm.save(file_path=tmp_path / "ai21.yaml")
|
||||
loaded_llm = load_llm(tmp_path / "ai21.yaml")
|
||||
assert llm == loaded_llm
|
||||
|
@ -1,6 +1,10 @@
|
||||
"""Test Cohere API wrapper."""
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
from langchain.llms.cohere import Cohere
|
||||
from langchain.llms.loading import load_llm
|
||||
from tests.integration_tests.llms.utils import assert_llm_equality
|
||||
|
||||
|
||||
def test_cohere_call() -> None:
|
||||
@ -8,3 +12,11 @@ def test_cohere_call() -> None:
|
||||
llm = Cohere(max_tokens=10)
|
||||
output = llm("Say foo:")
|
||||
assert isinstance(output, str)
|
||||
|
||||
|
||||
def test_saving_loading_llm(tmp_path: Path) -> None:
|
||||
"""Test saving/loading an Cohere LLM."""
|
||||
llm = Cohere(max_tokens=10)
|
||||
llm.save(file_path=tmp_path / "cohere.yaml")
|
||||
loaded_llm = load_llm(tmp_path / "cohere.yaml")
|
||||
assert_llm_equality(llm, loaded_llm)
|
||||
|
@ -1,8 +1,12 @@
|
||||
"""Test HuggingFace API wrapper."""
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
import pytest
|
||||
|
||||
from langchain.llms.huggingface_hub import HuggingFaceHub
|
||||
from langchain.llms.loading import load_llm
|
||||
from tests.integration_tests.llms.utils import assert_llm_equality
|
||||
|
||||
|
||||
def test_huggingface_text_generation() -> None:
|
||||
@ -24,3 +28,11 @@ def test_huggingface_call_error() -> None:
|
||||
llm = HuggingFaceHub(model_kwargs={"max_new_tokens": -1})
|
||||
with pytest.raises(ValueError):
|
||||
llm("Say foo:")
|
||||
|
||||
|
||||
def test_saving_loading_llm(tmp_path: Path) -> None:
|
||||
"""Test saving/loading an HuggingFaceHub LLM."""
|
||||
llm = HuggingFaceHub(repo_id="gpt2", model_kwargs={"max_new_tokens": 10})
|
||||
llm.save(file_path=tmp_path / "hf.yaml")
|
||||
loaded_llm = load_llm(tmp_path / "hf.yaml")
|
||||
assert_llm_equality(llm, loaded_llm)
|
||||
|
@ -1,6 +1,10 @@
|
||||
"""Test NLPCloud API wrapper."""
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
from langchain.llms.loading import load_llm
|
||||
from langchain.llms.nlpcloud import NLPCloud
|
||||
from tests.integration_tests.llms.utils import assert_llm_equality
|
||||
|
||||
|
||||
def test_nlpcloud_call() -> None:
|
||||
@ -8,3 +12,11 @@ def test_nlpcloud_call() -> None:
|
||||
llm = NLPCloud(max_length=10)
|
||||
output = llm("Say foo:")
|
||||
assert isinstance(output, str)
|
||||
|
||||
|
||||
def test_saving_loading_llm(tmp_path: Path) -> None:
|
||||
"""Test saving/loading an NLPCloud LLM."""
|
||||
llm = NLPCloud(max_length=10)
|
||||
llm.save(file_path=tmp_path / "nlpcloud.yaml")
|
||||
loaded_llm = load_llm(tmp_path / "nlpcloud.yaml")
|
||||
assert_llm_equality(llm, loaded_llm)
|
||||
|
@ -1,7 +1,10 @@
|
||||
"""Test OpenAI API wrapper."""
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
import pytest
|
||||
|
||||
from langchain.llms.loading import load_llm
|
||||
from langchain.llms.openai import OpenAI
|
||||
|
||||
|
||||
@ -44,3 +47,11 @@ def test_openai_stop_error() -> None:
|
||||
llm = OpenAI(stop="3", temperature=0)
|
||||
with pytest.raises(ValueError):
|
||||
llm("write an ordered list of five items", stop=["\n"])
|
||||
|
||||
|
||||
def test_saving_loading_llm(tmp_path: Path) -> None:
|
||||
"""Test saving/loading an OpenAPI LLM."""
|
||||
llm = OpenAI(max_tokens=10)
|
||||
llm.save(file_path=tmp_path / "openai.yaml")
|
||||
loaded_llm = load_llm(tmp_path / "openai.yaml")
|
||||
assert loaded_llm == llm
|
||||
|
16
tests/integration_tests/llms/utils.py
Normal file
16
tests/integration_tests/llms/utils.py
Normal file
@ -0,0 +1,16 @@
|
||||
"""Utils for LLM Tests."""
|
||||
|
||||
from langchain.llms.base import LLM
|
||||
|
||||
|
||||
def assert_llm_equality(llm: LLM, loaded_llm: LLM) -> None:
|
||||
"""Assert LLM Equality for tests."""
|
||||
# Check that they are the same type.
|
||||
assert type(llm) == type(loaded_llm)
|
||||
# Client field can be session based, so hash is different despite
|
||||
# all other values being the same, so just assess all other fields
|
||||
for field in llm.__fields__.keys():
|
||||
if field != "client":
|
||||
val = getattr(llm, field)
|
||||
new_val = getattr(loaded_llm, field)
|
||||
assert new_val == val
|
@ -2,17 +2,17 @@
|
||||
|
||||
from typing import Any, List, Mapping, Optional
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from langchain.agents import Tool, initialize_agent
|
||||
from langchain.llms.base import LLM
|
||||
|
||||
|
||||
class FakeListLLM(LLM):
|
||||
class FakeListLLM(LLM, BaseModel):
|
||||
"""Fake LLM for testing that outputs elements of a list."""
|
||||
|
||||
def __init__(self, responses: List[str]):
|
||||
"""Initialize with list of responses."""
|
||||
self.responses = responses
|
||||
self.i = -1
|
||||
responses: List[str]
|
||||
i: int = -1
|
||||
|
||||
def __call__(self, prompt: str, stop: Optional[List[str]] = None) -> str:
|
||||
"""Increment counter, and then return response in that index."""
|
||||
@ -25,6 +25,11 @@ class FakeListLLM(LLM):
|
||||
def _identifying_params(self) -> Mapping[str, Any]:
|
||||
return {}
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
"""Return type of llm."""
|
||||
return "fake_list"
|
||||
|
||||
|
||||
def test_agent_bad_action() -> None:
|
||||
"""Test react chain when bad action given."""
|
||||
@ -33,7 +38,7 @@ def test_agent_bad_action() -> None:
|
||||
f"I'm turning evil\nAction: {bad_action_name}\nAction Input: misalignment",
|
||||
"Oh well\nAction: Final Answer\nAction Input: curses foiled again",
|
||||
]
|
||||
fake_llm = FakeListLLM(responses)
|
||||
fake_llm = FakeListLLM(responses=responses)
|
||||
tools = [
|
||||
Tool("Search", lambda x: x, "Useful for searching"),
|
||||
Tool("Lookup", lambda x: x, "Useful for looking up things in a table"),
|
||||
|
@ -2,6 +2,8 @@
|
||||
|
||||
from typing import Any, List, Mapping, Optional, Union
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from langchain.agents.react.base import ReActChain, ReActDocstoreAgent
|
||||
from langchain.agents.tools import Tool
|
||||
from langchain.docstore.base import Docstore
|
||||
@ -20,13 +22,16 @@ Made in 2022."""
|
||||
_FAKE_PROMPT = PromptTemplate(input_variables=["input"], template="{input}")
|
||||
|
||||
|
||||
class FakeListLLM(LLM):
|
||||
class FakeListLLM(LLM, BaseModel):
|
||||
"""Fake LLM for testing that outputs elements of a list."""
|
||||
|
||||
def __init__(self, responses: List[str]):
|
||||
"""Initialize with list of responses."""
|
||||
self.responses = responses
|
||||
self.i = -1
|
||||
responses: List[str]
|
||||
i: int = -1
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
"""Return type of llm."""
|
||||
return "fake_list"
|
||||
|
||||
def __call__(self, prompt: str, stop: Optional[List[str]] = None) -> str:
|
||||
"""Increment counter, and then return response in that index."""
|
||||
@ -50,7 +55,7 @@ class FakeDocstore(Docstore):
|
||||
def test_predict_until_observation_normal() -> None:
|
||||
"""Test predict_until_observation when observation is made normally."""
|
||||
outputs = ["foo\nAction 1: Search[foo]"]
|
||||
fake_llm = FakeListLLM(outputs)
|
||||
fake_llm = FakeListLLM(responses=outputs)
|
||||
tools = [
|
||||
Tool("Search", lambda x: x),
|
||||
Tool("Lookup", lambda x: x),
|
||||
@ -65,7 +70,7 @@ def test_predict_until_observation_normal() -> None:
|
||||
def test_predict_until_observation_repeat() -> None:
|
||||
"""Test when no action is generated initially."""
|
||||
outputs = ["foo", " Search[foo]"]
|
||||
fake_llm = FakeListLLM(outputs)
|
||||
fake_llm = FakeListLLM(responses=outputs)
|
||||
tools = [
|
||||
Tool("Search", lambda x: x),
|
||||
Tool("Lookup", lambda x: x),
|
||||
@ -84,7 +89,7 @@ def test_react_chain() -> None:
|
||||
"I should probably lookup\nAction 2: Lookup[made]",
|
||||
"Ah okay now I know the answer\nAction 3: Finish[2022]",
|
||||
]
|
||||
fake_llm = FakeListLLM(responses)
|
||||
fake_llm = FakeListLLM(responses=responses)
|
||||
react_chain = ReActChain(llm=fake_llm, docstore=FakeDocstore())
|
||||
output = react_chain.run("when was langchain made")
|
||||
assert output == "2022"
|
||||
@ -97,7 +102,7 @@ def test_react_chain_bad_action() -> None:
|
||||
f"I'm turning evil\nAction 1: {bad_action_name}[langchain]",
|
||||
"Oh well\nAction 2: Finish[curses foiled again]",
|
||||
]
|
||||
fake_llm = FakeListLLM(responses)
|
||||
fake_llm = FakeListLLM(responses=responses)
|
||||
react_chain = ReActChain(llm=fake_llm, docstore=FakeDocstore())
|
||||
output = react_chain.run("when was langchain made")
|
||||
assert output == "curses foiled again"
|
||||
|
@ -2,11 +2,13 @@
|
||||
|
||||
from typing import Any, List, Mapping, Optional
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from langchain.chains.natbot.base import NatBotChain
|
||||
from langchain.llms.base import LLM
|
||||
|
||||
|
||||
class FakeLLM(LLM):
|
||||
class FakeLLM(LLM, BaseModel):
|
||||
"""Fake LLM wrapper for testing purposes."""
|
||||
|
||||
def __call__(self, prompt: str, stop: Optional[List[str]] = None) -> str:
|
||||
@ -16,6 +18,11 @@ class FakeLLM(LLM):
|
||||
else:
|
||||
return "bar"
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
"""Return type of llm."""
|
||||
return "fake"
|
||||
|
||||
@property
|
||||
def _identifying_params(self) -> Mapping[str, Any]:
|
||||
return {}
|
||||
|
@ -1,20 +1,25 @@
|
||||
"""Fake LLM wrapper for testing purposes."""
|
||||
from typing import Any, List, Mapping, Optional
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from langchain.llms.base import LLM
|
||||
|
||||
|
||||
class FakeLLM(LLM):
|
||||
class FakeLLM(LLM, BaseModel):
|
||||
"""Fake LLM wrapper for testing purposes."""
|
||||
|
||||
def __init__(self, queries: Optional[Mapping] = None):
|
||||
"""Initialize with optional lookup of queries."""
|
||||
self._queries = queries
|
||||
queries: Optional[Mapping] = None
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
"""Return type of llm."""
|
||||
return "fake"
|
||||
|
||||
def __call__(self, prompt: str, stop: Optional[List[str]] = None) -> str:
|
||||
"""First try to lookup in queries, else return 'foo' or 'bar'."""
|
||||
if self._queries is not None:
|
||||
return self._queries[prompt]
|
||||
if self.queries is not None:
|
||||
return self.queries[prompt]
|
||||
if stop is None:
|
||||
return "foo"
|
||||
else:
|
||||
|
15
tests/unit_tests/llms/test_loading.py
Normal file
15
tests/unit_tests/llms/test_loading.py
Normal file
@ -0,0 +1,15 @@
|
||||
"""Test LLM saving and loading functions."""
|
||||
from pathlib import Path
|
||||
from unittest.mock import patch
|
||||
|
||||
from langchain.llms.loading import load_llm
|
||||
from tests.unit_tests.llms.fake_llm import FakeLLM
|
||||
|
||||
|
||||
@patch("langchain.llms.loading.type_to_cls_dict", {"fake": FakeLLM})
|
||||
def test_saving_loading_round_trip(tmp_path: Path) -> None:
|
||||
"""Test saving/loading a Fake LLM."""
|
||||
fake_llm = FakeLLM()
|
||||
fake_llm.save(file_path=tmp_path / "fake_llm.yaml")
|
||||
loaded_llm = load_llm(tmp_path / "fake_llm.yaml")
|
||||
assert loaded_llm == fake_llm
|
Loading…
Reference in New Issue
Block a user