Harrison/llm saving (#331)

Co-authored-by: Akash Samant <70665700+asamant21@users.noreply.github.com>
This commit is contained in:
Harrison Chase
2022-12-13 06:46:01 -08:00
committed by GitHub
parent 595cc1ae1a
commit 9bb7195085
20 changed files with 279 additions and 28 deletions

View File

@@ -1,6 +1,9 @@
"""Test AI21 API wrapper."""
from pathlib import Path
from langchain.llms.ai21 import AI21
from langchain.llms.loading import load_llm
def test_ai21_call() -> None:
@@ -8,3 +11,11 @@ def test_ai21_call() -> None:
llm = AI21(maxTokens=10)
output = llm("Say foo:")
assert isinstance(output, str)
def test_saving_loading_llm(tmp_path: Path) -> None:
"""Test saving/loading an AI21 LLM."""
llm = AI21(maxTokens=10)
llm.save(file_path=tmp_path / "ai21.yaml")
loaded_llm = load_llm(tmp_path / "ai21.yaml")
assert llm == loaded_llm

View File

@@ -1,6 +1,10 @@
"""Test Cohere API wrapper."""
from pathlib import Path
from langchain.llms.cohere import Cohere
from langchain.llms.loading import load_llm
from tests.integration_tests.llms.utils import assert_llm_equality
def test_cohere_call() -> None:
@@ -8,3 +12,11 @@ def test_cohere_call() -> None:
llm = Cohere(max_tokens=10)
output = llm("Say foo:")
assert isinstance(output, str)
def test_saving_loading_llm(tmp_path: Path) -> None:
"""Test saving/loading an Cohere LLM."""
llm = Cohere(max_tokens=10)
llm.save(file_path=tmp_path / "cohere.yaml")
loaded_llm = load_llm(tmp_path / "cohere.yaml")
assert_llm_equality(llm, loaded_llm)

View File

@@ -1,8 +1,12 @@
"""Test HuggingFace API wrapper."""
from pathlib import Path
import pytest
from langchain.llms.huggingface_hub import HuggingFaceHub
from langchain.llms.loading import load_llm
from tests.integration_tests.llms.utils import assert_llm_equality
def test_huggingface_text_generation() -> None:
@@ -24,3 +28,11 @@ def test_huggingface_call_error() -> None:
llm = HuggingFaceHub(model_kwargs={"max_new_tokens": -1})
with pytest.raises(ValueError):
llm("Say foo:")
def test_saving_loading_llm(tmp_path: Path) -> None:
"""Test saving/loading an HuggingFaceHub LLM."""
llm = HuggingFaceHub(repo_id="gpt2", model_kwargs={"max_new_tokens": 10})
llm.save(file_path=tmp_path / "hf.yaml")
loaded_llm = load_llm(tmp_path / "hf.yaml")
assert_llm_equality(llm, loaded_llm)

View File

@@ -1,6 +1,10 @@
"""Test NLPCloud API wrapper."""
from pathlib import Path
from langchain.llms.loading import load_llm
from langchain.llms.nlpcloud import NLPCloud
from tests.integration_tests.llms.utils import assert_llm_equality
def test_nlpcloud_call() -> None:
@@ -8,3 +12,11 @@ def test_nlpcloud_call() -> None:
llm = NLPCloud(max_length=10)
output = llm("Say foo:")
assert isinstance(output, str)
def test_saving_loading_llm(tmp_path: Path) -> None:
"""Test saving/loading an NLPCloud LLM."""
llm = NLPCloud(max_length=10)
llm.save(file_path=tmp_path / "nlpcloud.yaml")
loaded_llm = load_llm(tmp_path / "nlpcloud.yaml")
assert_llm_equality(llm, loaded_llm)

View File

@@ -1,7 +1,10 @@
"""Test OpenAI API wrapper."""
from pathlib import Path
import pytest
from langchain.llms.loading import load_llm
from langchain.llms.openai import OpenAI
@@ -44,3 +47,11 @@ def test_openai_stop_error() -> None:
llm = OpenAI(stop="3", temperature=0)
with pytest.raises(ValueError):
llm("write an ordered list of five items", stop=["\n"])
def test_saving_loading_llm(tmp_path: Path) -> None:
"""Test saving/loading an OpenAPI LLM."""
llm = OpenAI(max_tokens=10)
llm.save(file_path=tmp_path / "openai.yaml")
loaded_llm = load_llm(tmp_path / "openai.yaml")
assert loaded_llm == llm

View File

@@ -0,0 +1,16 @@
"""Utils for LLM Tests."""
from langchain.llms.base import LLM
def assert_llm_equality(llm: LLM, loaded_llm: LLM) -> None:
"""Assert LLM Equality for tests."""
# Check that they are the same type.
assert type(llm) == type(loaded_llm)
# Client field can be session based, so hash is different despite
# all other values being the same, so just assess all other fields
for field in llm.__fields__.keys():
if field != "client":
val = getattr(llm, field)
new_val = getattr(loaded_llm, field)
assert new_val == val

View File

@@ -2,17 +2,17 @@
from typing import Any, List, Mapping, Optional
from pydantic import BaseModel
from langchain.agents import Tool, initialize_agent
from langchain.llms.base import LLM
class FakeListLLM(LLM):
class FakeListLLM(LLM, BaseModel):
"""Fake LLM for testing that outputs elements of a list."""
def __init__(self, responses: List[str]):
"""Initialize with list of responses."""
self.responses = responses
self.i = -1
responses: List[str]
i: int = -1
def __call__(self, prompt: str, stop: Optional[List[str]] = None) -> str:
"""Increment counter, and then return response in that index."""
@@ -25,6 +25,11 @@ class FakeListLLM(LLM):
def _identifying_params(self) -> Mapping[str, Any]:
return {}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "fake_list"
def test_agent_bad_action() -> None:
"""Test react chain when bad action given."""
@@ -33,7 +38,7 @@ def test_agent_bad_action() -> None:
f"I'm turning evil\nAction: {bad_action_name}\nAction Input: misalignment",
"Oh well\nAction: Final Answer\nAction Input: curses foiled again",
]
fake_llm = FakeListLLM(responses)
fake_llm = FakeListLLM(responses=responses)
tools = [
Tool("Search", lambda x: x, "Useful for searching"),
Tool("Lookup", lambda x: x, "Useful for looking up things in a table"),

View File

@@ -2,6 +2,8 @@
from typing import Any, List, Mapping, Optional, Union
from pydantic import BaseModel
from langchain.agents.react.base import ReActChain, ReActDocstoreAgent
from langchain.agents.tools import Tool
from langchain.docstore.base import Docstore
@@ -20,13 +22,16 @@ Made in 2022."""
_FAKE_PROMPT = PromptTemplate(input_variables=["input"], template="{input}")
class FakeListLLM(LLM):
class FakeListLLM(LLM, BaseModel):
"""Fake LLM for testing that outputs elements of a list."""
def __init__(self, responses: List[str]):
"""Initialize with list of responses."""
self.responses = responses
self.i = -1
responses: List[str]
i: int = -1
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "fake_list"
def __call__(self, prompt: str, stop: Optional[List[str]] = None) -> str:
"""Increment counter, and then return response in that index."""
@@ -50,7 +55,7 @@ class FakeDocstore(Docstore):
def test_predict_until_observation_normal() -> None:
"""Test predict_until_observation when observation is made normally."""
outputs = ["foo\nAction 1: Search[foo]"]
fake_llm = FakeListLLM(outputs)
fake_llm = FakeListLLM(responses=outputs)
tools = [
Tool("Search", lambda x: x),
Tool("Lookup", lambda x: x),
@@ -65,7 +70,7 @@ def test_predict_until_observation_normal() -> None:
def test_predict_until_observation_repeat() -> None:
"""Test when no action is generated initially."""
outputs = ["foo", " Search[foo]"]
fake_llm = FakeListLLM(outputs)
fake_llm = FakeListLLM(responses=outputs)
tools = [
Tool("Search", lambda x: x),
Tool("Lookup", lambda x: x),
@@ -84,7 +89,7 @@ def test_react_chain() -> None:
"I should probably lookup\nAction 2: Lookup[made]",
"Ah okay now I know the answer\nAction 3: Finish[2022]",
]
fake_llm = FakeListLLM(responses)
fake_llm = FakeListLLM(responses=responses)
react_chain = ReActChain(llm=fake_llm, docstore=FakeDocstore())
output = react_chain.run("when was langchain made")
assert output == "2022"
@@ -97,7 +102,7 @@ def test_react_chain_bad_action() -> None:
f"I'm turning evil\nAction 1: {bad_action_name}[langchain]",
"Oh well\nAction 2: Finish[curses foiled again]",
]
fake_llm = FakeListLLM(responses)
fake_llm = FakeListLLM(responses=responses)
react_chain = ReActChain(llm=fake_llm, docstore=FakeDocstore())
output = react_chain.run("when was langchain made")
assert output == "curses foiled again"

View File

@@ -2,11 +2,13 @@
from typing import Any, List, Mapping, Optional
from pydantic import BaseModel
from langchain.chains.natbot.base import NatBotChain
from langchain.llms.base import LLM
class FakeLLM(LLM):
class FakeLLM(LLM, BaseModel):
"""Fake LLM wrapper for testing purposes."""
def __call__(self, prompt: str, stop: Optional[List[str]] = None) -> str:
@@ -16,6 +18,11 @@ class FakeLLM(LLM):
else:
return "bar"
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "fake"
@property
def _identifying_params(self) -> Mapping[str, Any]:
return {}

View File

@@ -1,20 +1,25 @@
"""Fake LLM wrapper for testing purposes."""
from typing import Any, List, Mapping, Optional
from pydantic import BaseModel
from langchain.llms.base import LLM
class FakeLLM(LLM):
class FakeLLM(LLM, BaseModel):
"""Fake LLM wrapper for testing purposes."""
def __init__(self, queries: Optional[Mapping] = None):
"""Initialize with optional lookup of queries."""
self._queries = queries
queries: Optional[Mapping] = None
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "fake"
def __call__(self, prompt: str, stop: Optional[List[str]] = None) -> str:
"""First try to lookup in queries, else return 'foo' or 'bar'."""
if self._queries is not None:
return self._queries[prompt]
if self.queries is not None:
return self.queries[prompt]
if stop is None:
return "foo"
else:

View File

@@ -0,0 +1,15 @@
"""Test LLM saving and loading functions."""
from pathlib import Path
from unittest.mock import patch
from langchain.llms.loading import load_llm
from tests.unit_tests.llms.fake_llm import FakeLLM
@patch("langchain.llms.loading.type_to_cls_dict", {"fake": FakeLLM})
def test_saving_loading_round_trip(tmp_path: Path) -> None:
"""Test saving/loading a Fake LLM."""
fake_llm = FakeLLM()
fake_llm.save(file_path=tmp_path / "fake_llm.yaml")
loaded_llm = load_llm(tmp_path / "fake_llm.yaml")
assert loaded_llm == fake_llm