Harrison/llm saving (#331)

Co-authored-by: Akash Samant <70665700+asamant21@users.noreply.github.com>
This commit is contained in:
Harrison Chase
2022-12-13 06:46:01 -08:00
committed by GitHub
parent 595cc1ae1a
commit 9bb7195085
20 changed files with 279 additions and 28 deletions

View File

@@ -2,6 +2,8 @@
from typing import Any, List, Mapping, Optional, Union
from pydantic import BaseModel
from langchain.agents.react.base import ReActChain, ReActDocstoreAgent
from langchain.agents.tools import Tool
from langchain.docstore.base import Docstore
@@ -20,13 +22,16 @@ Made in 2022."""
_FAKE_PROMPT = PromptTemplate(input_variables=["input"], template="{input}")
class FakeListLLM(LLM):
class FakeListLLM(LLM, BaseModel):
"""Fake LLM for testing that outputs elements of a list."""
def __init__(self, responses: List[str]):
"""Initialize with list of responses."""
self.responses = responses
self.i = -1
responses: List[str]
i: int = -1
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "fake_list"
def __call__(self, prompt: str, stop: Optional[List[str]] = None) -> str:
"""Increment counter, and then return response in that index."""
@@ -50,7 +55,7 @@ class FakeDocstore(Docstore):
def test_predict_until_observation_normal() -> None:
"""Test predict_until_observation when observation is made normally."""
outputs = ["foo\nAction 1: Search[foo]"]
fake_llm = FakeListLLM(outputs)
fake_llm = FakeListLLM(responses=outputs)
tools = [
Tool("Search", lambda x: x),
Tool("Lookup", lambda x: x),
@@ -65,7 +70,7 @@ def test_predict_until_observation_normal() -> None:
def test_predict_until_observation_repeat() -> None:
"""Test when no action is generated initially."""
outputs = ["foo", " Search[foo]"]
fake_llm = FakeListLLM(outputs)
fake_llm = FakeListLLM(responses=outputs)
tools = [
Tool("Search", lambda x: x),
Tool("Lookup", lambda x: x),
@@ -84,7 +89,7 @@ def test_react_chain() -> None:
"I should probably lookup\nAction 2: Lookup[made]",
"Ah okay now I know the answer\nAction 3: Finish[2022]",
]
fake_llm = FakeListLLM(responses)
fake_llm = FakeListLLM(responses=responses)
react_chain = ReActChain(llm=fake_llm, docstore=FakeDocstore())
output = react_chain.run("when was langchain made")
assert output == "2022"
@@ -97,7 +102,7 @@ def test_react_chain_bad_action() -> None:
f"I'm turning evil\nAction 1: {bad_action_name}[langchain]",
"Oh well\nAction 2: Finish[curses foiled again]",
]
fake_llm = FakeListLLM(responses)
fake_llm = FakeListLLM(responses=responses)
react_chain = ReActChain(llm=fake_llm, docstore=FakeDocstore())
output = react_chain.run("when was langchain made")
assert output == "curses foiled again"