mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-19 05:13:46 +00:00
Harrison/llm saving (#331)
Co-authored-by: Akash Samant <70665700+asamant21@users.noreply.github.com>
This commit is contained in:
parent
595cc1ae1a
commit
9bb7195085
@ -1,7 +1,19 @@
|
|||||||
"""Wrappers on top of large language models APIs."""
|
"""Wrappers on top of large language models APIs."""
|
||||||
|
from typing import Dict, Type
|
||||||
|
|
||||||
|
from langchain.llms.ai21 import AI21
|
||||||
|
from langchain.llms.base import LLM
|
||||||
from langchain.llms.cohere import Cohere
|
from langchain.llms.cohere import Cohere
|
||||||
from langchain.llms.huggingface_hub import HuggingFaceHub
|
from langchain.llms.huggingface_hub import HuggingFaceHub
|
||||||
from langchain.llms.nlpcloud import NLPCloud
|
from langchain.llms.nlpcloud import NLPCloud
|
||||||
from langchain.llms.openai import OpenAI
|
from langchain.llms.openai import OpenAI
|
||||||
|
|
||||||
__all__ = ["Cohere", "NLPCloud", "OpenAI", "HuggingFaceHub"]
|
__all__ = ["Cohere", "NLPCloud", "OpenAI", "HuggingFaceHub", "AI21"]
|
||||||
|
|
||||||
|
type_to_cls_dict: Dict[str, Type[LLM]] = {
|
||||||
|
"ai21": AI21,
|
||||||
|
"cohere": Cohere,
|
||||||
|
"huggingface_hub": HuggingFaceHub,
|
||||||
|
"nlpcloud": NLPCloud,
|
||||||
|
"openai": OpenAI,
|
||||||
|
}
|
||||||
|
@ -19,7 +19,7 @@ class AI21PenaltyData(BaseModel):
|
|||||||
applyToEmojis: bool = True
|
applyToEmojis: bool = True
|
||||||
|
|
||||||
|
|
||||||
class AI21(BaseModel, LLM):
|
class AI21(LLM, BaseModel):
|
||||||
"""Wrapper around AI21 large language models.
|
"""Wrapper around AI21 large language models.
|
||||||
|
|
||||||
To use, you should have the environment variable ``AI21_API_KEY``
|
To use, you should have the environment variable ``AI21_API_KEY``
|
||||||
@ -96,6 +96,11 @@ class AI21(BaseModel, LLM):
|
|||||||
"""Get the identifying parameters."""
|
"""Get the identifying parameters."""
|
||||||
return {**{"model": self.model}, **self._default_params}
|
return {**{"model": self.model}, **self._default_params}
|
||||||
|
|
||||||
|
@property
|
||||||
|
def _llm_type(self) -> str:
|
||||||
|
"""Return type of llm."""
|
||||||
|
return "ai21"
|
||||||
|
|
||||||
def __call__(self, prompt: str, stop: Optional[List[str]] = None) -> str:
|
def __call__(self, prompt: str, stop: Optional[List[str]] = None) -> str:
|
||||||
"""Call out to AI21's complete endpoint.
|
"""Call out to AI21's complete endpoint.
|
||||||
|
|
||||||
|
@ -1,6 +1,11 @@
|
|||||||
"""Base interface for large language models to expose."""
|
"""Base interface for large language models to expose."""
|
||||||
|
import json
|
||||||
from abc import ABC, abstractmethod
|
from abc import ABC, abstractmethod
|
||||||
from typing import Any, List, Mapping, NamedTuple, Optional
|
from pathlib import Path
|
||||||
|
from typing import Any, Dict, List, Mapping, NamedTuple, Optional, Union
|
||||||
|
|
||||||
|
import yaml
|
||||||
|
from pydantic import BaseModel, Extra
|
||||||
|
|
||||||
|
|
||||||
class Generation(NamedTuple):
|
class Generation(NamedTuple):
|
||||||
@ -21,9 +26,14 @@ class LLMResult(NamedTuple):
|
|||||||
"""For arbitrary LLM provider specific output."""
|
"""For arbitrary LLM provider specific output."""
|
||||||
|
|
||||||
|
|
||||||
class LLM(ABC):
|
class LLM(BaseModel, ABC):
|
||||||
"""LLM wrapper should take in a prompt and return a string."""
|
"""LLM wrapper should take in a prompt and return a string."""
|
||||||
|
|
||||||
|
class Config:
|
||||||
|
"""Configuration for this pydantic object."""
|
||||||
|
|
||||||
|
extra = Extra.forbid
|
||||||
|
|
||||||
def generate(
|
def generate(
|
||||||
self, prompts: List[str], stop: Optional[List[str]] = None
|
self, prompts: List[str], stop: Optional[List[str]] = None
|
||||||
) -> LLMResult:
|
) -> LLMResult:
|
||||||
@ -68,3 +78,46 @@ class LLM(ABC):
|
|||||||
"""Get a string representation of the object for printing."""
|
"""Get a string representation of the object for printing."""
|
||||||
cls_name = f"\033[1m{self.__class__.__name__}\033[0m"
|
cls_name = f"\033[1m{self.__class__.__name__}\033[0m"
|
||||||
return f"{cls_name}\nParams: {self._identifying_params}"
|
return f"{cls_name}\nParams: {self._identifying_params}"
|
||||||
|
|
||||||
|
@property
|
||||||
|
@abstractmethod
|
||||||
|
def _llm_type(self) -> str:
|
||||||
|
"""Return type of llm."""
|
||||||
|
|
||||||
|
def _llm_dict(self) -> Dict:
|
||||||
|
"""Return a dictionary of the prompt."""
|
||||||
|
starter_dict = dict(self._identifying_params)
|
||||||
|
starter_dict["_type"] = self._llm_type
|
||||||
|
return starter_dict
|
||||||
|
|
||||||
|
def save(self, file_path: Union[Path, str]) -> None:
|
||||||
|
"""Save the LLM.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
file_path: Path to file to save the LLM to.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
llm.save(file_path="path/llm.yaml")
|
||||||
|
"""
|
||||||
|
# Convert file to Path object.
|
||||||
|
if isinstance(file_path, str):
|
||||||
|
save_path = Path(file_path)
|
||||||
|
else:
|
||||||
|
save_path = file_path
|
||||||
|
|
||||||
|
directory_path = save_path.parent
|
||||||
|
directory_path.mkdir(parents=True, exist_ok=True)
|
||||||
|
|
||||||
|
# Fetch dictionary to save
|
||||||
|
prompt_dict = self._llm_dict()
|
||||||
|
|
||||||
|
if save_path.suffix == ".json":
|
||||||
|
with open(file_path, "w") as f:
|
||||||
|
json.dump(prompt_dict, f, indent=4)
|
||||||
|
elif save_path.suffix == ".yaml":
|
||||||
|
with open(file_path, "w") as f:
|
||||||
|
yaml.dump(prompt_dict, f, default_flow_style=False)
|
||||||
|
else:
|
||||||
|
raise ValueError(f"{save_path} must be json or yaml")
|
||||||
|
@ -85,6 +85,11 @@ class Cohere(LLM, BaseModel):
|
|||||||
"""Get the identifying parameters."""
|
"""Get the identifying parameters."""
|
||||||
return {**{"model": self.model}, **self._default_params}
|
return {**{"model": self.model}, **self._default_params}
|
||||||
|
|
||||||
|
@property
|
||||||
|
def _llm_type(self) -> str:
|
||||||
|
"""Return type of llm."""
|
||||||
|
return "cohere"
|
||||||
|
|
||||||
def __call__(self, prompt: str, stop: Optional[List[str]] = None) -> str:
|
def __call__(self, prompt: str, stop: Optional[List[str]] = None) -> str:
|
||||||
"""Call out to Cohere's generate endpoint.
|
"""Call out to Cohere's generate endpoint.
|
||||||
|
|
||||||
|
@ -74,7 +74,15 @@ class HuggingFaceHub(LLM, BaseModel):
|
|||||||
def _identifying_params(self) -> Mapping[str, Any]:
|
def _identifying_params(self) -> Mapping[str, Any]:
|
||||||
"""Get the identifying parameters."""
|
"""Get the identifying parameters."""
|
||||||
_model_kwargs = self.model_kwargs or {}
|
_model_kwargs = self.model_kwargs or {}
|
||||||
return {**{"repo_id": self.repo_id}, **_model_kwargs}
|
return {
|
||||||
|
**{"repo_id": self.repo_id, "task": self.task},
|
||||||
|
**{"model_kwargs": _model_kwargs},
|
||||||
|
}
|
||||||
|
|
||||||
|
@property
|
||||||
|
def _llm_type(self) -> str:
|
||||||
|
"""Return type of llm."""
|
||||||
|
return "huggingface_hub"
|
||||||
|
|
||||||
def __call__(self, prompt: str, stop: Optional[List[str]] = None) -> str:
|
def __call__(self, prompt: str, stop: Optional[List[str]] = None) -> str:
|
||||||
"""Call out to HuggingFace Hub's inference endpoint.
|
"""Call out to HuggingFace Hub's inference endpoint.
|
||||||
|
42
langchain/llms/loading.py
Normal file
42
langchain/llms/loading.py
Normal file
@ -0,0 +1,42 @@
|
|||||||
|
"""Base interface for loading large language models apis."""
|
||||||
|
import json
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Union
|
||||||
|
|
||||||
|
import yaml
|
||||||
|
|
||||||
|
from langchain.llms import type_to_cls_dict
|
||||||
|
from langchain.llms.base import LLM
|
||||||
|
|
||||||
|
|
||||||
|
def load_llm_from_config(config: dict) -> LLM:
|
||||||
|
"""Load LLM from Config Dict."""
|
||||||
|
if "_type" not in config:
|
||||||
|
raise ValueError("Must specify an LLM Type in config")
|
||||||
|
config_type = config.pop("_type")
|
||||||
|
|
||||||
|
if config_type not in type_to_cls_dict:
|
||||||
|
raise ValueError(f"Loading {config_type} LLM not supported")
|
||||||
|
|
||||||
|
llm_cls = type_to_cls_dict[config_type]
|
||||||
|
return llm_cls(**config)
|
||||||
|
|
||||||
|
|
||||||
|
def load_llm(file: Union[str, Path]) -> LLM:
|
||||||
|
"""Load LLM from file."""
|
||||||
|
# Convert file to Path object.
|
||||||
|
if isinstance(file, str):
|
||||||
|
file_path = Path(file)
|
||||||
|
else:
|
||||||
|
file_path = file
|
||||||
|
# Load from either json or yaml.
|
||||||
|
if file_path.suffix == ".json":
|
||||||
|
with open(file_path) as f:
|
||||||
|
config = json.load(f)
|
||||||
|
elif file_path.suffix == ".yaml":
|
||||||
|
with open(file_path, "r") as f:
|
||||||
|
config = yaml.safe_load(f)
|
||||||
|
else:
|
||||||
|
raise ValueError("File type must be json or yaml")
|
||||||
|
# Load the LLM from the config now.
|
||||||
|
return load_llm_from_config(config)
|
@ -37,6 +37,11 @@ class ManifestWrapper(LLM, BaseModel):
|
|||||||
kwargs = self.llm_kwargs or {}
|
kwargs = self.llm_kwargs or {}
|
||||||
return {**self.client.client.get_model_params(), **kwargs}
|
return {**self.client.client.get_model_params(), **kwargs}
|
||||||
|
|
||||||
|
@property
|
||||||
|
def _llm_type(self) -> str:
|
||||||
|
"""Return type of llm."""
|
||||||
|
return "manifest"
|
||||||
|
|
||||||
def __call__(self, prompt: str, stop: Optional[List[str]] = None) -> str:
|
def __call__(self, prompt: str, stop: Optional[List[str]] = None) -> str:
|
||||||
"""Call out to LLM through Manifest."""
|
"""Call out to LLM through Manifest."""
|
||||||
if stop is not None and len(stop) != 1:
|
if stop is not None and len(stop) != 1:
|
||||||
|
@ -106,6 +106,11 @@ class NLPCloud(LLM, BaseModel):
|
|||||||
"""Get the identifying parameters."""
|
"""Get the identifying parameters."""
|
||||||
return {**{"model_name": self.model_name}, **self._default_params}
|
return {**{"model_name": self.model_name}, **self._default_params}
|
||||||
|
|
||||||
|
@property
|
||||||
|
def _llm_type(self) -> str:
|
||||||
|
"""Return type of llm."""
|
||||||
|
return "nlpcloud"
|
||||||
|
|
||||||
def __call__(self, prompt: str, stop: Optional[List[str]] = None) -> str:
|
def __call__(self, prompt: str, stop: Optional[List[str]] = None) -> str:
|
||||||
"""Call out to NLPCloud's create endpoint.
|
"""Call out to NLPCloud's create endpoint.
|
||||||
|
|
||||||
|
@ -142,7 +142,12 @@ class OpenAI(LLM, BaseModel):
|
|||||||
@property
|
@property
|
||||||
def _identifying_params(self) -> Mapping[str, Any]:
|
def _identifying_params(self) -> Mapping[str, Any]:
|
||||||
"""Get the identifying parameters."""
|
"""Get the identifying parameters."""
|
||||||
return {**{"model": self.model_name}, **self._default_params}
|
return {**{"model_name": self.model_name}, **self._default_params}
|
||||||
|
|
||||||
|
@property
|
||||||
|
def _llm_type(self) -> str:
|
||||||
|
"""Return type of llm."""
|
||||||
|
return "openai"
|
||||||
|
|
||||||
def __call__(self, prompt: str, stop: Optional[List[str]] = None) -> str:
|
def __call__(self, prompt: str, stop: Optional[List[str]] = None) -> str:
|
||||||
"""Call out to OpenAI's create endpoint.
|
"""Call out to OpenAI's create endpoint.
|
||||||
|
@ -1,6 +1,9 @@
|
|||||||
"""Test AI21 API wrapper."""
|
"""Test AI21 API wrapper."""
|
||||||
|
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
from langchain.llms.ai21 import AI21
|
from langchain.llms.ai21 import AI21
|
||||||
|
from langchain.llms.loading import load_llm
|
||||||
|
|
||||||
|
|
||||||
def test_ai21_call() -> None:
|
def test_ai21_call() -> None:
|
||||||
@ -8,3 +11,11 @@ def test_ai21_call() -> None:
|
|||||||
llm = AI21(maxTokens=10)
|
llm = AI21(maxTokens=10)
|
||||||
output = llm("Say foo:")
|
output = llm("Say foo:")
|
||||||
assert isinstance(output, str)
|
assert isinstance(output, str)
|
||||||
|
|
||||||
|
|
||||||
|
def test_saving_loading_llm(tmp_path: Path) -> None:
|
||||||
|
"""Test saving/loading an AI21 LLM."""
|
||||||
|
llm = AI21(maxTokens=10)
|
||||||
|
llm.save(file_path=tmp_path / "ai21.yaml")
|
||||||
|
loaded_llm = load_llm(tmp_path / "ai21.yaml")
|
||||||
|
assert llm == loaded_llm
|
||||||
|
@ -1,6 +1,10 @@
|
|||||||
"""Test Cohere API wrapper."""
|
"""Test Cohere API wrapper."""
|
||||||
|
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
from langchain.llms.cohere import Cohere
|
from langchain.llms.cohere import Cohere
|
||||||
|
from langchain.llms.loading import load_llm
|
||||||
|
from tests.integration_tests.llms.utils import assert_llm_equality
|
||||||
|
|
||||||
|
|
||||||
def test_cohere_call() -> None:
|
def test_cohere_call() -> None:
|
||||||
@ -8,3 +12,11 @@ def test_cohere_call() -> None:
|
|||||||
llm = Cohere(max_tokens=10)
|
llm = Cohere(max_tokens=10)
|
||||||
output = llm("Say foo:")
|
output = llm("Say foo:")
|
||||||
assert isinstance(output, str)
|
assert isinstance(output, str)
|
||||||
|
|
||||||
|
|
||||||
|
def test_saving_loading_llm(tmp_path: Path) -> None:
|
||||||
|
"""Test saving/loading an Cohere LLM."""
|
||||||
|
llm = Cohere(max_tokens=10)
|
||||||
|
llm.save(file_path=tmp_path / "cohere.yaml")
|
||||||
|
loaded_llm = load_llm(tmp_path / "cohere.yaml")
|
||||||
|
assert_llm_equality(llm, loaded_llm)
|
||||||
|
@ -1,8 +1,12 @@
|
|||||||
"""Test HuggingFace API wrapper."""
|
"""Test HuggingFace API wrapper."""
|
||||||
|
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
import pytest
|
import pytest
|
||||||
|
|
||||||
from langchain.llms.huggingface_hub import HuggingFaceHub
|
from langchain.llms.huggingface_hub import HuggingFaceHub
|
||||||
|
from langchain.llms.loading import load_llm
|
||||||
|
from tests.integration_tests.llms.utils import assert_llm_equality
|
||||||
|
|
||||||
|
|
||||||
def test_huggingface_text_generation() -> None:
|
def test_huggingface_text_generation() -> None:
|
||||||
@ -24,3 +28,11 @@ def test_huggingface_call_error() -> None:
|
|||||||
llm = HuggingFaceHub(model_kwargs={"max_new_tokens": -1})
|
llm = HuggingFaceHub(model_kwargs={"max_new_tokens": -1})
|
||||||
with pytest.raises(ValueError):
|
with pytest.raises(ValueError):
|
||||||
llm("Say foo:")
|
llm("Say foo:")
|
||||||
|
|
||||||
|
|
||||||
|
def test_saving_loading_llm(tmp_path: Path) -> None:
|
||||||
|
"""Test saving/loading an HuggingFaceHub LLM."""
|
||||||
|
llm = HuggingFaceHub(repo_id="gpt2", model_kwargs={"max_new_tokens": 10})
|
||||||
|
llm.save(file_path=tmp_path / "hf.yaml")
|
||||||
|
loaded_llm = load_llm(tmp_path / "hf.yaml")
|
||||||
|
assert_llm_equality(llm, loaded_llm)
|
||||||
|
@ -1,6 +1,10 @@
|
|||||||
"""Test NLPCloud API wrapper."""
|
"""Test NLPCloud API wrapper."""
|
||||||
|
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
from langchain.llms.loading import load_llm
|
||||||
from langchain.llms.nlpcloud import NLPCloud
|
from langchain.llms.nlpcloud import NLPCloud
|
||||||
|
from tests.integration_tests.llms.utils import assert_llm_equality
|
||||||
|
|
||||||
|
|
||||||
def test_nlpcloud_call() -> None:
|
def test_nlpcloud_call() -> None:
|
||||||
@ -8,3 +12,11 @@ def test_nlpcloud_call() -> None:
|
|||||||
llm = NLPCloud(max_length=10)
|
llm = NLPCloud(max_length=10)
|
||||||
output = llm("Say foo:")
|
output = llm("Say foo:")
|
||||||
assert isinstance(output, str)
|
assert isinstance(output, str)
|
||||||
|
|
||||||
|
|
||||||
|
def test_saving_loading_llm(tmp_path: Path) -> None:
|
||||||
|
"""Test saving/loading an NLPCloud LLM."""
|
||||||
|
llm = NLPCloud(max_length=10)
|
||||||
|
llm.save(file_path=tmp_path / "nlpcloud.yaml")
|
||||||
|
loaded_llm = load_llm(tmp_path / "nlpcloud.yaml")
|
||||||
|
assert_llm_equality(llm, loaded_llm)
|
||||||
|
@ -1,7 +1,10 @@
|
|||||||
"""Test OpenAI API wrapper."""
|
"""Test OpenAI API wrapper."""
|
||||||
|
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
import pytest
|
import pytest
|
||||||
|
|
||||||
|
from langchain.llms.loading import load_llm
|
||||||
from langchain.llms.openai import OpenAI
|
from langchain.llms.openai import OpenAI
|
||||||
|
|
||||||
|
|
||||||
@ -44,3 +47,11 @@ def test_openai_stop_error() -> None:
|
|||||||
llm = OpenAI(stop="3", temperature=0)
|
llm = OpenAI(stop="3", temperature=0)
|
||||||
with pytest.raises(ValueError):
|
with pytest.raises(ValueError):
|
||||||
llm("write an ordered list of five items", stop=["\n"])
|
llm("write an ordered list of five items", stop=["\n"])
|
||||||
|
|
||||||
|
|
||||||
|
def test_saving_loading_llm(tmp_path: Path) -> None:
|
||||||
|
"""Test saving/loading an OpenAPI LLM."""
|
||||||
|
llm = OpenAI(max_tokens=10)
|
||||||
|
llm.save(file_path=tmp_path / "openai.yaml")
|
||||||
|
loaded_llm = load_llm(tmp_path / "openai.yaml")
|
||||||
|
assert loaded_llm == llm
|
||||||
|
16
tests/integration_tests/llms/utils.py
Normal file
16
tests/integration_tests/llms/utils.py
Normal file
@ -0,0 +1,16 @@
|
|||||||
|
"""Utils for LLM Tests."""
|
||||||
|
|
||||||
|
from langchain.llms.base import LLM
|
||||||
|
|
||||||
|
|
||||||
|
def assert_llm_equality(llm: LLM, loaded_llm: LLM) -> None:
|
||||||
|
"""Assert LLM Equality for tests."""
|
||||||
|
# Check that they are the same type.
|
||||||
|
assert type(llm) == type(loaded_llm)
|
||||||
|
# Client field can be session based, so hash is different despite
|
||||||
|
# all other values being the same, so just assess all other fields
|
||||||
|
for field in llm.__fields__.keys():
|
||||||
|
if field != "client":
|
||||||
|
val = getattr(llm, field)
|
||||||
|
new_val = getattr(loaded_llm, field)
|
||||||
|
assert new_val == val
|
@ -2,17 +2,17 @@
|
|||||||
|
|
||||||
from typing import Any, List, Mapping, Optional
|
from typing import Any, List, Mapping, Optional
|
||||||
|
|
||||||
|
from pydantic import BaseModel
|
||||||
|
|
||||||
from langchain.agents import Tool, initialize_agent
|
from langchain.agents import Tool, initialize_agent
|
||||||
from langchain.llms.base import LLM
|
from langchain.llms.base import LLM
|
||||||
|
|
||||||
|
|
||||||
class FakeListLLM(LLM):
|
class FakeListLLM(LLM, BaseModel):
|
||||||
"""Fake LLM for testing that outputs elements of a list."""
|
"""Fake LLM for testing that outputs elements of a list."""
|
||||||
|
|
||||||
def __init__(self, responses: List[str]):
|
responses: List[str]
|
||||||
"""Initialize with list of responses."""
|
i: int = -1
|
||||||
self.responses = responses
|
|
||||||
self.i = -1
|
|
||||||
|
|
||||||
def __call__(self, prompt: str, stop: Optional[List[str]] = None) -> str:
|
def __call__(self, prompt: str, stop: Optional[List[str]] = None) -> str:
|
||||||
"""Increment counter, and then return response in that index."""
|
"""Increment counter, and then return response in that index."""
|
||||||
@ -25,6 +25,11 @@ class FakeListLLM(LLM):
|
|||||||
def _identifying_params(self) -> Mapping[str, Any]:
|
def _identifying_params(self) -> Mapping[str, Any]:
|
||||||
return {}
|
return {}
|
||||||
|
|
||||||
|
@property
|
||||||
|
def _llm_type(self) -> str:
|
||||||
|
"""Return type of llm."""
|
||||||
|
return "fake_list"
|
||||||
|
|
||||||
|
|
||||||
def test_agent_bad_action() -> None:
|
def test_agent_bad_action() -> None:
|
||||||
"""Test react chain when bad action given."""
|
"""Test react chain when bad action given."""
|
||||||
@ -33,7 +38,7 @@ def test_agent_bad_action() -> None:
|
|||||||
f"I'm turning evil\nAction: {bad_action_name}\nAction Input: misalignment",
|
f"I'm turning evil\nAction: {bad_action_name}\nAction Input: misalignment",
|
||||||
"Oh well\nAction: Final Answer\nAction Input: curses foiled again",
|
"Oh well\nAction: Final Answer\nAction Input: curses foiled again",
|
||||||
]
|
]
|
||||||
fake_llm = FakeListLLM(responses)
|
fake_llm = FakeListLLM(responses=responses)
|
||||||
tools = [
|
tools = [
|
||||||
Tool("Search", lambda x: x, "Useful for searching"),
|
Tool("Search", lambda x: x, "Useful for searching"),
|
||||||
Tool("Lookup", lambda x: x, "Useful for looking up things in a table"),
|
Tool("Lookup", lambda x: x, "Useful for looking up things in a table"),
|
||||||
|
@ -2,6 +2,8 @@
|
|||||||
|
|
||||||
from typing import Any, List, Mapping, Optional, Union
|
from typing import Any, List, Mapping, Optional, Union
|
||||||
|
|
||||||
|
from pydantic import BaseModel
|
||||||
|
|
||||||
from langchain.agents.react.base import ReActChain, ReActDocstoreAgent
|
from langchain.agents.react.base import ReActChain, ReActDocstoreAgent
|
||||||
from langchain.agents.tools import Tool
|
from langchain.agents.tools import Tool
|
||||||
from langchain.docstore.base import Docstore
|
from langchain.docstore.base import Docstore
|
||||||
@ -20,13 +22,16 @@ Made in 2022."""
|
|||||||
_FAKE_PROMPT = PromptTemplate(input_variables=["input"], template="{input}")
|
_FAKE_PROMPT = PromptTemplate(input_variables=["input"], template="{input}")
|
||||||
|
|
||||||
|
|
||||||
class FakeListLLM(LLM):
|
class FakeListLLM(LLM, BaseModel):
|
||||||
"""Fake LLM for testing that outputs elements of a list."""
|
"""Fake LLM for testing that outputs elements of a list."""
|
||||||
|
|
||||||
def __init__(self, responses: List[str]):
|
responses: List[str]
|
||||||
"""Initialize with list of responses."""
|
i: int = -1
|
||||||
self.responses = responses
|
|
||||||
self.i = -1
|
@property
|
||||||
|
def _llm_type(self) -> str:
|
||||||
|
"""Return type of llm."""
|
||||||
|
return "fake_list"
|
||||||
|
|
||||||
def __call__(self, prompt: str, stop: Optional[List[str]] = None) -> str:
|
def __call__(self, prompt: str, stop: Optional[List[str]] = None) -> str:
|
||||||
"""Increment counter, and then return response in that index."""
|
"""Increment counter, and then return response in that index."""
|
||||||
@ -50,7 +55,7 @@ class FakeDocstore(Docstore):
|
|||||||
def test_predict_until_observation_normal() -> None:
|
def test_predict_until_observation_normal() -> None:
|
||||||
"""Test predict_until_observation when observation is made normally."""
|
"""Test predict_until_observation when observation is made normally."""
|
||||||
outputs = ["foo\nAction 1: Search[foo]"]
|
outputs = ["foo\nAction 1: Search[foo]"]
|
||||||
fake_llm = FakeListLLM(outputs)
|
fake_llm = FakeListLLM(responses=outputs)
|
||||||
tools = [
|
tools = [
|
||||||
Tool("Search", lambda x: x),
|
Tool("Search", lambda x: x),
|
||||||
Tool("Lookup", lambda x: x),
|
Tool("Lookup", lambda x: x),
|
||||||
@ -65,7 +70,7 @@ def test_predict_until_observation_normal() -> None:
|
|||||||
def test_predict_until_observation_repeat() -> None:
|
def test_predict_until_observation_repeat() -> None:
|
||||||
"""Test when no action is generated initially."""
|
"""Test when no action is generated initially."""
|
||||||
outputs = ["foo", " Search[foo]"]
|
outputs = ["foo", " Search[foo]"]
|
||||||
fake_llm = FakeListLLM(outputs)
|
fake_llm = FakeListLLM(responses=outputs)
|
||||||
tools = [
|
tools = [
|
||||||
Tool("Search", lambda x: x),
|
Tool("Search", lambda x: x),
|
||||||
Tool("Lookup", lambda x: x),
|
Tool("Lookup", lambda x: x),
|
||||||
@ -84,7 +89,7 @@ def test_react_chain() -> None:
|
|||||||
"I should probably lookup\nAction 2: Lookup[made]",
|
"I should probably lookup\nAction 2: Lookup[made]",
|
||||||
"Ah okay now I know the answer\nAction 3: Finish[2022]",
|
"Ah okay now I know the answer\nAction 3: Finish[2022]",
|
||||||
]
|
]
|
||||||
fake_llm = FakeListLLM(responses)
|
fake_llm = FakeListLLM(responses=responses)
|
||||||
react_chain = ReActChain(llm=fake_llm, docstore=FakeDocstore())
|
react_chain = ReActChain(llm=fake_llm, docstore=FakeDocstore())
|
||||||
output = react_chain.run("when was langchain made")
|
output = react_chain.run("when was langchain made")
|
||||||
assert output == "2022"
|
assert output == "2022"
|
||||||
@ -97,7 +102,7 @@ def test_react_chain_bad_action() -> None:
|
|||||||
f"I'm turning evil\nAction 1: {bad_action_name}[langchain]",
|
f"I'm turning evil\nAction 1: {bad_action_name}[langchain]",
|
||||||
"Oh well\nAction 2: Finish[curses foiled again]",
|
"Oh well\nAction 2: Finish[curses foiled again]",
|
||||||
]
|
]
|
||||||
fake_llm = FakeListLLM(responses)
|
fake_llm = FakeListLLM(responses=responses)
|
||||||
react_chain = ReActChain(llm=fake_llm, docstore=FakeDocstore())
|
react_chain = ReActChain(llm=fake_llm, docstore=FakeDocstore())
|
||||||
output = react_chain.run("when was langchain made")
|
output = react_chain.run("when was langchain made")
|
||||||
assert output == "curses foiled again"
|
assert output == "curses foiled again"
|
||||||
|
@ -2,11 +2,13 @@
|
|||||||
|
|
||||||
from typing import Any, List, Mapping, Optional
|
from typing import Any, List, Mapping, Optional
|
||||||
|
|
||||||
|
from pydantic import BaseModel
|
||||||
|
|
||||||
from langchain.chains.natbot.base import NatBotChain
|
from langchain.chains.natbot.base import NatBotChain
|
||||||
from langchain.llms.base import LLM
|
from langchain.llms.base import LLM
|
||||||
|
|
||||||
|
|
||||||
class FakeLLM(LLM):
|
class FakeLLM(LLM, BaseModel):
|
||||||
"""Fake LLM wrapper for testing purposes."""
|
"""Fake LLM wrapper for testing purposes."""
|
||||||
|
|
||||||
def __call__(self, prompt: str, stop: Optional[List[str]] = None) -> str:
|
def __call__(self, prompt: str, stop: Optional[List[str]] = None) -> str:
|
||||||
@ -16,6 +18,11 @@ class FakeLLM(LLM):
|
|||||||
else:
|
else:
|
||||||
return "bar"
|
return "bar"
|
||||||
|
|
||||||
|
@property
|
||||||
|
def _llm_type(self) -> str:
|
||||||
|
"""Return type of llm."""
|
||||||
|
return "fake"
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def _identifying_params(self) -> Mapping[str, Any]:
|
def _identifying_params(self) -> Mapping[str, Any]:
|
||||||
return {}
|
return {}
|
||||||
|
@ -1,20 +1,25 @@
|
|||||||
"""Fake LLM wrapper for testing purposes."""
|
"""Fake LLM wrapper for testing purposes."""
|
||||||
from typing import Any, List, Mapping, Optional
|
from typing import Any, List, Mapping, Optional
|
||||||
|
|
||||||
|
from pydantic import BaseModel
|
||||||
|
|
||||||
from langchain.llms.base import LLM
|
from langchain.llms.base import LLM
|
||||||
|
|
||||||
|
|
||||||
class FakeLLM(LLM):
|
class FakeLLM(LLM, BaseModel):
|
||||||
"""Fake LLM wrapper for testing purposes."""
|
"""Fake LLM wrapper for testing purposes."""
|
||||||
|
|
||||||
def __init__(self, queries: Optional[Mapping] = None):
|
queries: Optional[Mapping] = None
|
||||||
"""Initialize with optional lookup of queries."""
|
|
||||||
self._queries = queries
|
@property
|
||||||
|
def _llm_type(self) -> str:
|
||||||
|
"""Return type of llm."""
|
||||||
|
return "fake"
|
||||||
|
|
||||||
def __call__(self, prompt: str, stop: Optional[List[str]] = None) -> str:
|
def __call__(self, prompt: str, stop: Optional[List[str]] = None) -> str:
|
||||||
"""First try to lookup in queries, else return 'foo' or 'bar'."""
|
"""First try to lookup in queries, else return 'foo' or 'bar'."""
|
||||||
if self._queries is not None:
|
if self.queries is not None:
|
||||||
return self._queries[prompt]
|
return self.queries[prompt]
|
||||||
if stop is None:
|
if stop is None:
|
||||||
return "foo"
|
return "foo"
|
||||||
else:
|
else:
|
||||||
|
15
tests/unit_tests/llms/test_loading.py
Normal file
15
tests/unit_tests/llms/test_loading.py
Normal file
@ -0,0 +1,15 @@
|
|||||||
|
"""Test LLM saving and loading functions."""
|
||||||
|
from pathlib import Path
|
||||||
|
from unittest.mock import patch
|
||||||
|
|
||||||
|
from langchain.llms.loading import load_llm
|
||||||
|
from tests.unit_tests.llms.fake_llm import FakeLLM
|
||||||
|
|
||||||
|
|
||||||
|
@patch("langchain.llms.loading.type_to_cls_dict", {"fake": FakeLLM})
|
||||||
|
def test_saving_loading_round_trip(tmp_path: Path) -> None:
|
||||||
|
"""Test saving/loading a Fake LLM."""
|
||||||
|
fake_llm = FakeLLM()
|
||||||
|
fake_llm.save(file_path=tmp_path / "fake_llm.yaml")
|
||||||
|
loaded_llm = load_llm(tmp_path / "fake_llm.yaml")
|
||||||
|
assert loaded_llm == fake_llm
|
Loading…
Reference in New Issue
Block a user