mirror of
https://github.com/hwchase17/langchain.git
synced 2025-08-10 13:27:36 +00:00
Normalize Trajectory Eval Score (#7668)
This commit is contained in:
parent
5f03cc3511
commit
aab2a7cd4b
@ -37,7 +37,7 @@ name of the dataset to load.
|
||||
- Grading the accuracy of a response against ground truth answers: :class:`QAEvalChain <langchain.evaluation.qa.eval_chain.QAEvalChain>`
|
||||
- Comparing the output of two models: :class:`PairwiseStringEvalChain <langchain.evaluation.comparison.eval_chain.PairwiseStringEvalChain>` or :class:`LabeledPairwiseStringEvalChain <langchain.evaluation.comparison.eval_chain.LabeledPairwiseStringEvalChain>` when there is additionally a reference label.
|
||||
- Judging the efficacy of an agent's tool usage: :class:`TrajectoryEvalChain <langchain.evaluation.agents.trajectory_eval_chain.TrajectoryEvalChain>`
|
||||
- Checking whether an output complies with a set of criteria: :class:`CriteriaEvalChain <langchain.evaluation.criteria.eval_chain.CriteriaEvalChain>`
|
||||
- Checking whether an output complies with a set of criteria: :class:`CriteriaEvalChain <langchain.evaluation.criteria.eval_chain.CriteriaEvalChain>` or :class:`LabeledCriteriaEvalChain <langchain.evaluation.criteria.eval_chain.LabeledCriteriaEvalChain>` when there is additionally a reference label.
|
||||
- Computing semantic difference between a prediction and reference: :class:`EmbeddingDistanceEvalChain <langchain.evaluation.embedding_distance.base.EmbeddingDistanceEvalChain>` or between two predictions: :class:`PairwiseEmbeddingDistanceEvalChain <langchain.evaluation.embedding_distance.base.PairwiseEmbeddingDistanceEvalChain>`
|
||||
- Measuring the string distance between a prediction and reference :class:`StringDistanceEvalChain <langchain.evaluation.string_distance.base.StringDistanceEvalChain>` or between two predictions :class:`PairwiseStringDistanceEvalChain <langchain.evaluation.string_distance.base.PairwiseStringDistanceEvalChain>`
|
||||
|
||||
|
@ -27,8 +27,12 @@ from langchain.tools.base import BaseTool
|
||||
|
||||
|
||||
class TrajectoryEval(NamedTuple):
|
||||
score: int
|
||||
"""A named tuple containing the score and reasoning for a trajectory."""
|
||||
|
||||
score: float
|
||||
"""The score for the trajectory, normalized from 0 to 1.s"""
|
||||
reasoning: str
|
||||
"""The reasoning for the score."""
|
||||
|
||||
|
||||
class TrajectoryOutputParser(BaseOutputParser):
|
||||
@ -43,11 +47,11 @@ class TrajectoryOutputParser(BaseOutputParser):
|
||||
text (str): The output text to parse.
|
||||
|
||||
Returns:
|
||||
TrajectoryEval: A named tuple containing the score and reasoning.
|
||||
TrajectoryEval: A named tuple containing the normalized score and reasoning.
|
||||
|
||||
Raises:
|
||||
OutputParserException: If the score is not found in the output text or
|
||||
if the score is not a digit in the range 1-5.
|
||||
if the LLM's score is not a digit in the range 1-5.
|
||||
"""
|
||||
if "Score:" not in text:
|
||||
raise OutputParserException(
|
||||
@ -66,8 +70,8 @@ class TrajectoryOutputParser(BaseOutputParser):
|
||||
raise OutputParserException(
|
||||
f"Score is not a digit in the range 1-5: {text}"
|
||||
)
|
||||
|
||||
return TrajectoryEval(score=int(score_str), reasoning=reasoning)
|
||||
normalized_score = (int(score_str) - 1) / 4
|
||||
return TrajectoryEval(score=normalized_score, reasoning=reasoning)
|
||||
|
||||
|
||||
class TrajectoryEvalChain(AgentTrajectoryEvaluator, LLMEvalChain):
|
||||
@ -90,7 +94,7 @@ class TrajectoryEvalChain(AgentTrajectoryEvaluator, LLMEvalChain):
|
||||
\"\"\"Very helpful answers to geography questions.\"\"\"
|
||||
return f"{country}? IDK - We may never know {question}."
|
||||
|
||||
llm = ChatOpenAI(model="gpt-3.5-turbo-0613", temperature=0)
|
||||
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)
|
||||
agent = initialize_agent(
|
||||
tools=[geography_answers],
|
||||
llm=llm,
|
||||
|
@ -70,7 +70,7 @@ def test_trajectory_eval_chain(
|
||||
agent_trajectory=intermediate_steps,
|
||||
prediction="I like pie.",
|
||||
)
|
||||
assert res["score"] == 5
|
||||
assert res["score"] == 1.0
|
||||
# Test when ref is provided
|
||||
res = chain.evaluate_agent_trajectory(
|
||||
input="What is your favorite food?",
|
||||
@ -78,7 +78,7 @@ def test_trajectory_eval_chain(
|
||||
prediction="I like pie.",
|
||||
reference="Paris",
|
||||
)
|
||||
assert res["score"] == 1
|
||||
assert res["score"] == 0.0
|
||||
|
||||
|
||||
def test_trajectory_eval_chain_no_tools(
|
||||
@ -97,14 +97,14 @@ def test_trajectory_eval_chain_no_tools(
|
||||
agent_trajectory=intermediate_steps,
|
||||
prediction="I like pie.",
|
||||
)
|
||||
assert res["score"] == 5
|
||||
assert res["score"] == 1.0
|
||||
res = chain.evaluate_agent_trajectory(
|
||||
input="What is your favorite food?",
|
||||
agent_trajectory=intermediate_steps,
|
||||
prediction="I like pie.",
|
||||
reference="Paris",
|
||||
)
|
||||
assert res["score"] == 1
|
||||
assert res["score"] == 0.0
|
||||
|
||||
|
||||
def test_old_api_works(intermediate_steps: List[Tuple[AgentAction, str]]) -> None:
|
||||
@ -123,7 +123,7 @@ def test_old_api_works(intermediate_steps: List[Tuple[AgentAction, str]]) -> Non
|
||||
"answer": "I like pie.",
|
||||
}
|
||||
)
|
||||
assert res["score"] == 5
|
||||
assert res["score"] == 1.0
|
||||
|
||||
res = chain(
|
||||
{
|
||||
@ -133,4 +133,4 @@ def test_old_api_works(intermediate_steps: List[Tuple[AgentAction, str]]) -> Non
|
||||
"reference": "Paris",
|
||||
}
|
||||
)
|
||||
assert res["score"] == 1
|
||||
assert res["score"] == 0.0
|
||||
|
Loading…
Reference in New Issue
Block a user