mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-08 06:23:20 +00:00
community: SamabanovaCloud tool calling and Structured output (#27967)
**Description:** Add tool calling and structured output support for SambaNovaCloud chat models, docs included --------- Co-authored-by: Erick Friis <erick@langchain.dev>
This commit is contained in:
committed by
GitHub
parent
cb32bab69d
commit
abaea28417
@@ -1,10 +1,25 @@
|
||||
import json
|
||||
from typing import Any, Dict, Iterator, List, Optional, Tuple
|
||||
from operator import itemgetter
|
||||
from typing import (
|
||||
Any,
|
||||
Callable,
|
||||
Dict,
|
||||
Iterator,
|
||||
List,
|
||||
Literal,
|
||||
Optional,
|
||||
Sequence,
|
||||
Tuple,
|
||||
Type,
|
||||
Union,
|
||||
cast,
|
||||
)
|
||||
|
||||
import requests
|
||||
from langchain_core.callbacks import (
|
||||
CallbackManagerForLLMRun,
|
||||
)
|
||||
from langchain_core.language_models import LanguageModelInput
|
||||
from langchain_core.language_models.chat_models import (
|
||||
BaseChatModel,
|
||||
generate_from_stream,
|
||||
@@ -19,9 +34,24 @@ from langchain_core.messages import (
|
||||
SystemMessage,
|
||||
ToolMessage,
|
||||
)
|
||||
from langchain_core.output_parsers import (
|
||||
JsonOutputParser,
|
||||
PydanticOutputParser,
|
||||
)
|
||||
from langchain_core.output_parsers.base import OutputParserLike
|
||||
from langchain_core.output_parsers.openai_tools import (
|
||||
JsonOutputKeyToolsParser,
|
||||
PydanticToolsParser,
|
||||
make_invalid_tool_call,
|
||||
parse_tool_call,
|
||||
)
|
||||
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
||||
from langchain_core.runnables import Runnable, RunnableMap, RunnablePassthrough
|
||||
from langchain_core.tools import BaseTool
|
||||
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
|
||||
from pydantic import Field, SecretStr
|
||||
from langchain_core.utils.function_calling import convert_to_openai_tool
|
||||
from langchain_core.utils.pydantic import is_basemodel_subclass
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
from requests import Response
|
||||
|
||||
|
||||
@@ -35,6 +65,7 @@ def _convert_message_to_dict(message: BaseMessage) -> Dict[str, Any]:
|
||||
Returns:
|
||||
messages_dict: role / content dict
|
||||
"""
|
||||
message_dict: Dict[str, Any] = {}
|
||||
if isinstance(message, ChatMessage):
|
||||
message_dict = {"role": message.role, "content": message.content}
|
||||
elif isinstance(message, SystemMessage):
|
||||
@@ -43,8 +74,16 @@ def _convert_message_to_dict(message: BaseMessage) -> Dict[str, Any]:
|
||||
message_dict = {"role": "user", "content": message.content}
|
||||
elif isinstance(message, AIMessage):
|
||||
message_dict = {"role": "assistant", "content": message.content}
|
||||
if "tool_calls" in message.additional_kwargs:
|
||||
message_dict["tool_calls"] = message.additional_kwargs["tool_calls"]
|
||||
if message_dict["content"] == "":
|
||||
message_dict["content"] = None
|
||||
elif isinstance(message, ToolMessage):
|
||||
message_dict = {"role": "tool", "content": message.content}
|
||||
message_dict = {
|
||||
"role": "tool",
|
||||
"content": message.content,
|
||||
"tool_call_id": message.tool_call_id,
|
||||
}
|
||||
else:
|
||||
raise TypeError(f"Got unknown type {message}")
|
||||
return message_dict
|
||||
@@ -64,14 +103,18 @@ def _create_message_dicts(messages: List[BaseMessage]) -> List[Dict[str, Any]]:
|
||||
return message_dicts
|
||||
|
||||
|
||||
def _is_pydantic_class(obj: Any) -> bool:
|
||||
return isinstance(obj, type) and is_basemodel_subclass(obj)
|
||||
|
||||
|
||||
class ChatSambaNovaCloud(BaseChatModel):
|
||||
"""
|
||||
SambaNova Cloud chat model.
|
||||
|
||||
Setup:
|
||||
To use, you should have the environment variables:
|
||||
``SAMBANOVA_URL`` set with your SambaNova Cloud URL.
|
||||
``SAMBANOVA_API_KEY`` set with your SambaNova Cloud API Key.
|
||||
`SAMBANOVA_URL` set with your SambaNova Cloud URL.
|
||||
`SAMBANOVA_API_KEY` set with your SambaNova Cloud API Key.
|
||||
http://cloud.sambanova.ai/
|
||||
Example:
|
||||
.. code-block:: python
|
||||
@@ -123,8 +166,10 @@ class ChatSambaNovaCloud(BaseChatModel):
|
||||
top_k = model top k,
|
||||
stream_options = include usage to get generation metrics
|
||||
)
|
||||
|
||||
Invoke:
|
||||
.. code-block:: python
|
||||
|
||||
messages = [
|
||||
SystemMessage(content="your are an AI assistant."),
|
||||
HumanMessage(content="tell me a joke."),
|
||||
@@ -134,26 +179,78 @@ class ChatSambaNovaCloud(BaseChatModel):
|
||||
Stream:
|
||||
.. code-block:: python
|
||||
|
||||
for chunk in chat.stream(messages):
|
||||
print(chunk.content, end="", flush=True)
|
||||
for chunk in chat.stream(messages):
|
||||
print(chunk.content, end="", flush=True)
|
||||
|
||||
Async:
|
||||
.. code-block:: python
|
||||
|
||||
response = chat.ainvoke(messages)
|
||||
await response
|
||||
response = chat.ainvoke(messages)
|
||||
await response
|
||||
|
||||
Tool calling:
|
||||
.. code-block:: python
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
class GetWeather(BaseModel):
|
||||
'''Get the current weather in a given location'''
|
||||
|
||||
location: str = Field(
|
||||
...,
|
||||
description="The city and state, e.g. Los Angeles, CA"
|
||||
)
|
||||
|
||||
llm_with_tools = llm.bind_tools([GetWeather, GetPopulation])
|
||||
ai_msg = llm_with_tools.invoke("Should I bring my umbrella today in LA?")
|
||||
ai_msg.tool_calls
|
||||
|
||||
.. code-block:: none
|
||||
|
||||
[
|
||||
{
|
||||
'name': 'GetWeather',
|
||||
'args': {'location': 'Los Angeles, CA'},
|
||||
'id': 'call_adf61180ea2b4d228a'
|
||||
}
|
||||
]
|
||||
|
||||
Structured output:
|
||||
.. code-block:: python
|
||||
|
||||
from typing import Optional
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
class Joke(BaseModel):
|
||||
'''Joke to tell user.'''
|
||||
|
||||
setup: str = Field(description="The setup of the joke")
|
||||
punchline: str = Field(description="The punchline to the joke")
|
||||
|
||||
structured_model = llm.with_structured_output(Joke)
|
||||
structured_model.invoke("Tell me a joke about cats")
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
Joke(setup="Why did the cat join a band?",
|
||||
punchline="Because it wanted to be the purr-cussionist!")
|
||||
|
||||
See `ChatSambanovaCloud.with_structured_output()` for more.
|
||||
|
||||
Token usage:
|
||||
.. code-block:: python
|
||||
response = chat.invoke(messages)
|
||||
print(response.response_metadata["usage"]["prompt_tokens"]
|
||||
print(response.response_metadata["usage"]["total_tokens"]
|
||||
|
||||
response = chat.invoke(messages)
|
||||
print(response.response_metadata["usage"]["prompt_tokens"]
|
||||
print(response.response_metadata["usage"]["total_tokens"]
|
||||
|
||||
Response metadata
|
||||
.. code-block:: python
|
||||
|
||||
response = chat.invoke(messages)
|
||||
print(response.response_metadata)
|
||||
response = chat.invoke(messages)
|
||||
print(response.response_metadata)
|
||||
|
||||
"""
|
||||
|
||||
sambanova_url: str = Field(default="")
|
||||
@@ -180,9 +277,12 @@ class ChatSambaNovaCloud(BaseChatModel):
|
||||
top_k: Optional[int] = Field(default=None)
|
||||
"""model top k"""
|
||||
|
||||
stream_options: dict = Field(default={"include_usage": True})
|
||||
stream_options: Dict[str, Any] = Field(default={"include_usage": True})
|
||||
"""stream options, include usage to get generation metrics"""
|
||||
|
||||
additional_headers: Dict[str, Any] = Field(default={})
|
||||
"""Additional headers to sent in request"""
|
||||
|
||||
class Config:
|
||||
populate_by_name = True
|
||||
|
||||
@@ -230,36 +330,409 @@ class ChatSambaNovaCloud(BaseChatModel):
|
||||
)
|
||||
super().__init__(**kwargs)
|
||||
|
||||
def bind_tools(
|
||||
self,
|
||||
tools: Sequence[Union[Dict[str, Any], Type[Any], Callable[..., Any], BaseTool]],
|
||||
*,
|
||||
tool_choice: Optional[Union[Dict[str, Any], bool, str]] = None,
|
||||
parallel_tool_calls: Optional[bool] = False,
|
||||
**kwargs: Any,
|
||||
) -> Runnable[LanguageModelInput, BaseMessage]:
|
||||
"""Bind tool-like objects to this chat model
|
||||
|
||||
tool_choice: does not currently support "any", choice like
|
||||
should be one of ["auto", "none", "required"]
|
||||
"""
|
||||
|
||||
formatted_tools = [convert_to_openai_tool(tool) for tool in tools]
|
||||
|
||||
if tool_choice:
|
||||
if isinstance(tool_choice, str):
|
||||
# tool_choice is a tool/function name
|
||||
if tool_choice not in ("auto", "none", "required"):
|
||||
tool_choice = "auto"
|
||||
elif isinstance(tool_choice, bool):
|
||||
if tool_choice:
|
||||
tool_choice = "required"
|
||||
elif isinstance(tool_choice, dict):
|
||||
raise ValueError(
|
||||
"tool_choice must be one of ['auto', 'none', 'required']"
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unrecognized tool_choice type. Expected str, bool"
|
||||
f"Received: {tool_choice}"
|
||||
)
|
||||
else:
|
||||
tool_choice = "auto"
|
||||
kwargs["tool_choice"] = tool_choice
|
||||
kwargs["parallel_tool_calls"] = parallel_tool_calls
|
||||
return super().bind(tools=formatted_tools, **kwargs)
|
||||
|
||||
def with_structured_output(
|
||||
self,
|
||||
schema: Optional[Union[Dict[str, Any], Type[BaseModel]]] = None,
|
||||
*,
|
||||
method: Literal[
|
||||
"function_calling", "json_mode", "json_schema"
|
||||
] = "function_calling",
|
||||
include_raw: bool = False,
|
||||
**kwargs: Any,
|
||||
) -> Runnable[LanguageModelInput, Union[Dict[str, Any], BaseModel]]:
|
||||
"""Model wrapper that returns outputs formatted to match the given schema.
|
||||
|
||||
Args:
|
||||
schema:
|
||||
The output schema. Can be passed in as:
|
||||
- an OpenAI function/tool schema,
|
||||
- a JSON Schema,
|
||||
- a TypedDict class,
|
||||
- or a Pydantic.BaseModel class.
|
||||
If `schema` is a Pydantic class then the model output will be a
|
||||
Pydantic instance of that class, and the model-generated fields will be
|
||||
validated by the Pydantic class. Otherwise the model output will be a
|
||||
dict and will not be validated. See :meth:`langchain_core.utils.function_calling.convert_to_openai_tool`
|
||||
for more on how to properly specify types and descriptions of
|
||||
schema fields when specifying a Pydantic or TypedDict class.
|
||||
|
||||
method:
|
||||
The method for steering model generation, either "function_calling"
|
||||
"json_mode" or "json_schema".
|
||||
If "function_calling" then the schema will be converted
|
||||
to an OpenAI function and the returned model will make use of the
|
||||
function-calling API. If "json_mode" or "json_schema" then OpenAI's
|
||||
JSON mode will be used.
|
||||
Note that if using "json_mode" or "json_schema" then you must include instructions
|
||||
for formatting the output into the desired schema into the model call.
|
||||
|
||||
include_raw:
|
||||
If False then only the parsed structured output is returned. If
|
||||
an error occurs during model output parsing it will be raised. If True
|
||||
then both the raw model response (a BaseMessage) and the parsed model
|
||||
response will be returned. If an error occurs during output parsing it
|
||||
will be caught and returned as well. The final output is always a dict
|
||||
with keys "raw", "parsed", and "parsing_error".
|
||||
|
||||
Returns:
|
||||
A Runnable that takes same inputs as a :class:`langchain_core.language_models.chat.BaseChatModel`.
|
||||
|
||||
If `include_raw` is False and `schema` is a Pydantic class, Runnable outputs
|
||||
an instance of `schema` (i.e., a Pydantic object).
|
||||
|
||||
Otherwise, if `include_raw` is False then Runnable outputs a dict.
|
||||
|
||||
If `include_raw` is True, then Runnable outputs a dict with keys:
|
||||
- `"raw"`: BaseMessage
|
||||
- `"parsed"`: None if there was a parsing error, otherwise the type depends on the `schema` as described above.
|
||||
- `"parsing_error"`: Optional[BaseException]
|
||||
|
||||
Example: schema=Pydantic class, method="function_calling", include_raw=False:
|
||||
.. code-block:: python
|
||||
|
||||
from typing import Optional
|
||||
|
||||
from langchain_community.chat_models import ChatSambaNovaCloud
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class AnswerWithJustification(BaseModel):
|
||||
'''An answer to the user question along with justification for the answer.'''
|
||||
|
||||
answer: str
|
||||
justification: str = Field(
|
||||
description="A justification for the answer."
|
||||
)
|
||||
|
||||
|
||||
llm = ChatSambaNovaCloud(model="Meta-Llama-3.1-70B-Instruct", temperature=0)
|
||||
structured_llm = llm.with_structured_output(AnswerWithJustification)
|
||||
|
||||
structured_llm.invoke(
|
||||
"What weighs more a pound of bricks or a pound of feathers"
|
||||
)
|
||||
|
||||
# -> AnswerWithJustification(
|
||||
# answer='They weigh the same',
|
||||
# justification='A pound is a unit of weight or mass, so a pound of bricks and a pound of feathers both weigh the same.'
|
||||
# )
|
||||
|
||||
Example: schema=Pydantic class, method="function_calling", include_raw=True:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_community.chat_models import ChatSambaNovaCloud
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class AnswerWithJustification(BaseModel):
|
||||
'''An answer to the user question along with justification for the answer.'''
|
||||
|
||||
answer: str
|
||||
justification: str
|
||||
|
||||
|
||||
llm = ChatSambaNovaCloud(model="Meta-Llama-3.1-70B-Instruct", temperature=0)
|
||||
structured_llm = llm.with_structured_output(
|
||||
AnswerWithJustification, include_raw=True
|
||||
)
|
||||
|
||||
structured_llm.invoke(
|
||||
"What weighs more a pound of bricks or a pound of feathers"
|
||||
)
|
||||
# -> {
|
||||
# 'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'function': {'arguments': '{"answer": "They weigh the same.", "justification": "A pound is a unit of weight or mass, so one pound of bricks and one pound of feathers both weigh the same amount."}', 'name': 'AnswerWithJustification'}, 'id': 'call_17a431fc6a4240e1bd', 'type': 'function'}]}, response_metadata={'finish_reason': 'tool_calls', 'usage': {'acceptance_rate': 5, 'completion_tokens': 53, 'completion_tokens_after_first_per_sec': 343.7964936837758, 'completion_tokens_after_first_per_sec_first_ten': 439.1205661878638, 'completion_tokens_per_sec': 162.8511306784833, 'end_time': 1731527851.0698032, 'is_last_response': True, 'prompt_tokens': 213, 'start_time': 1731527850.7137961, 'time_to_first_token': 0.20475482940673828, 'total_latency': 0.32545061111450196, 'total_tokens': 266, 'total_tokens_per_sec': 817.3283162354066}, 'model_name': 'Meta-Llama-3.1-70B-Instruct', 'system_fingerprint': 'fastcoe', 'created': 1731527850}, id='95667eaf-447f-4b53-bb6e-b6e1094ded88', tool_calls=[{'name': 'AnswerWithJustification', 'args': {'answer': 'They weigh the same.', 'justification': 'A pound is a unit of weight or mass, so one pound of bricks and one pound of feathers both weigh the same amount.'}, 'id': 'call_17a431fc6a4240e1bd', 'type': 'tool_call'}]),
|
||||
# 'parsed': AnswerWithJustification(answer='They weigh the same.', justification='A pound is a unit of weight or mass, so one pound of bricks and one pound of feathers both weigh the same amount.'),
|
||||
# 'parsing_error': None
|
||||
# }
|
||||
|
||||
Example: schema=TypedDict class, method="function_calling", include_raw=False:
|
||||
.. code-block:: python
|
||||
|
||||
# IMPORTANT: If you are using Python <=3.8, you need to import Annotated
|
||||
# from typing_extensions, not from typing.
|
||||
from typing_extensions import Annotated, TypedDict
|
||||
|
||||
from langchain_community.chat_models import ChatSambaNovaCloud
|
||||
|
||||
|
||||
class AnswerWithJustification(TypedDict):
|
||||
'''An answer to the user question along with justification for the answer.'''
|
||||
|
||||
answer: str
|
||||
justification: Annotated[
|
||||
Optional[str], None, "A justification for the answer."
|
||||
]
|
||||
|
||||
|
||||
llm = ChatSambaNovaCloud(model="Meta-Llama-3.1-70B-Instruct", temperature=0)
|
||||
structured_llm = llm.with_structured_output(AnswerWithJustification)
|
||||
|
||||
structured_llm.invoke(
|
||||
"What weighs more a pound of bricks or a pound of feathers"
|
||||
)
|
||||
# -> {
|
||||
# 'answer': 'They weigh the same',
|
||||
# 'justification': 'A pound is a unit of weight or mass, so one pound of bricks and one pound of feathers both weigh the same amount.'
|
||||
# }
|
||||
|
||||
Example: schema=OpenAI function schema, method="function_calling", include_raw=False:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_community.chat_models import ChatSambaNovaCloud
|
||||
|
||||
oai_schema = {
|
||||
'name': 'AnswerWithJustification',
|
||||
'description': 'An answer to the user question along with justification for the answer.',
|
||||
'parameters': {
|
||||
'type': 'object',
|
||||
'properties': {
|
||||
'answer': {'type': 'string'},
|
||||
'justification': {'description': 'A justification for the answer.', 'type': 'string'}
|
||||
},
|
||||
'required': ['answer']
|
||||
}
|
||||
}
|
||||
|
||||
llm = ChatSambaNovaCloud(model="Meta-Llama-3.1-70B-Instruct", temperature=0)
|
||||
structured_llm = llm.with_structured_output(oai_schema)
|
||||
|
||||
structured_llm.invoke(
|
||||
"What weighs more a pound of bricks or a pound of feathers"
|
||||
)
|
||||
# -> {
|
||||
# 'answer': 'They weigh the same',
|
||||
# 'justification': 'A pound is a unit of weight or mass, so one pound of bricks and one pound of feathers both weigh the same amount.'
|
||||
# }
|
||||
|
||||
Example: schema=Pydantic class, method="json_mode", include_raw=True:
|
||||
.. code-block::
|
||||
|
||||
from langchain_community.chat_models import ChatSambaNovaCloud
|
||||
from pydantic import BaseModel
|
||||
|
||||
class AnswerWithJustification(BaseModel):
|
||||
answer: str
|
||||
justification: str
|
||||
|
||||
llm = ChatSambaNovaCloud(model="Meta-Llama-3.1-70B-Instruct", temperature=0)
|
||||
structured_llm = llm.with_structured_output(
|
||||
AnswerWithJustification,
|
||||
method="json_mode",
|
||||
include_raw=True
|
||||
)
|
||||
|
||||
structured_llm.invoke(
|
||||
"Answer the following question. "
|
||||
"Make sure to return a JSON blob with keys 'answer' and 'justification'.\n\n"
|
||||
"What's heavier a pound of bricks or a pound of feathers?"
|
||||
)
|
||||
# -> {
|
||||
# 'raw': AIMessage(content='{\n "answer": "They are the same weight",\n "justification": "A pound is a unit of weight or mass, so a pound of bricks and a pound of feathers both weigh the same amount, one pound. The difference is in their density and volume. A pound of feathers would take up more space than a pound of bricks due to the difference in their densities."\n}', additional_kwargs={}, response_metadata={'finish_reason': 'stop', 'usage': {'acceptance_rate': 5.3125, 'completion_tokens': 79, 'completion_tokens_after_first_per_sec': 292.65701089829776, 'completion_tokens_after_first_per_sec_first_ten': 346.43324678555325, 'completion_tokens_per_sec': 200.012158915008, 'end_time': 1731528071.1708555, 'is_last_response': True, 'prompt_tokens': 70, 'start_time': 1731528070.737394, 'time_to_first_token': 0.16693782806396484, 'total_latency': 0.3949759876026827, 'total_tokens': 149, 'total_tokens_per_sec': 377.2381225105847}, 'model_name': 'Meta-Llama-3.1-70B-Instruct', 'system_fingerprint': 'fastcoe', 'created': 1731528070}, id='83208297-3eb9-4021-a856-ca78a15758df'),
|
||||
# 'parsed': AnswerWithJustification(answer='They are the same weight', justification='A pound is a unit of weight or mass, so a pound of bricks and a pound of feathers both weigh the same amount, one pound. The difference is in their density and volume. A pound of feathers would take up more space than a pound of bricks due to the difference in their densities.'),
|
||||
# 'parsing_error': None
|
||||
# }
|
||||
|
||||
Example: schema=None, method="json_mode", include_raw=True:
|
||||
.. code-block::
|
||||
|
||||
from langchain_community.chat_models import ChatSambaNovaCloud
|
||||
|
||||
llm = ChatSambaNovaCloud(model="Meta-Llama-3.1-70B-Instruct", temperature=0)
|
||||
structured_llm = llm.with_structured_output(method="json_mode", include_raw=True)
|
||||
|
||||
structured_llm.invoke(
|
||||
"Answer the following question. "
|
||||
"Make sure to return a JSON blob with keys 'answer' and 'justification'.\n\n"
|
||||
"What's heavier a pound of bricks or a pound of feathers?"
|
||||
)
|
||||
# -> {
|
||||
# 'raw': AIMessage(content='{\n "answer": "They are the same weight",\n "justification": "A pound is a unit of weight or mass, so a pound of bricks and a pound of feathers both weigh the same amount, one pound. The difference is in their density and volume. A pound of feathers would take up more space than a pound of bricks due to the difference in their densities."\n}', additional_kwargs={}, response_metadata={'finish_reason': 'stop', 'usage': {'acceptance_rate': 4.722222222222222, 'completion_tokens': 79, 'completion_tokens_after_first_per_sec': 357.1315485254867, 'completion_tokens_after_first_per_sec_first_ten': 416.83279609305305, 'completion_tokens_per_sec': 240.92819585198137, 'end_time': 1731528164.8474727, 'is_last_response': True, 'prompt_tokens': 70, 'start_time': 1731528164.4906917, 'time_to_first_token': 0.13837409019470215, 'total_latency': 0.3278985247892492, 'total_tokens': 149, 'total_tokens_per_sec': 454.4088757208256}, 'model_name': 'Meta-Llama-3.1-70B-Instruct', 'system_fingerprint': 'fastcoe', 'created': 1731528164}, id='15261eaf-8a25-42ef-8ed5-f63d8bf5b1b0'),
|
||||
# 'parsed': {
|
||||
# 'answer': 'They are the same weight',
|
||||
# 'justification': 'A pound is a unit of weight or mass, so a pound of bricks and a pound of feathers both weigh the same amount, one pound. The difference is in their density and volume. A pound of feathers would take up more space than a pound of bricks due to the difference in their densities.'},
|
||||
# },
|
||||
# 'parsing_error': None
|
||||
# }
|
||||
|
||||
Example: schema=None, method="json_schema", include_raw=True:
|
||||
.. code-block::
|
||||
|
||||
from langchain_community.chat_models import ChatSambaNovaCloud
|
||||
|
||||
class AnswerWithJustification(BaseModel):
|
||||
answer: str
|
||||
justification: str
|
||||
|
||||
llm = ChatSambaNovaCloud(model="Meta-Llama-3.1-70B-Instruct", temperature=0)
|
||||
structured_llm = llm.with_structured_output(AnswerWithJustification, method="json_schema", include_raw=True)
|
||||
|
||||
structured_llm.invoke(
|
||||
"Answer the following question. "
|
||||
"Make sure to return a JSON blob with keys 'answer' and 'justification'.\n\n"
|
||||
"What's heavier a pound of bricks or a pound of feathers?"
|
||||
)
|
||||
# -> {
|
||||
# 'raw': AIMessage(content='{\n "answer": "They are the same weight",\n "justification": "A pound is a unit of weight or mass, so a pound of bricks and a pound of feathers both weigh the same amount, one pound. The difference is in their density and volume. A pound of feathers would take up more space than a pound of bricks due to the difference in their densities."\n}', additional_kwargs={}, response_metadata={'finish_reason': 'stop', 'usage': {'acceptance_rate': 5.3125, 'completion_tokens': 79, 'completion_tokens_after_first_per_sec': 292.65701089829776, 'completion_tokens_after_first_per_sec_first_ten': 346.43324678555325, 'completion_tokens_per_sec': 200.012158915008, 'end_time': 1731528071.1708555, 'is_last_response': True, 'prompt_tokens': 70, 'start_time': 1731528070.737394, 'time_to_first_token': 0.16693782806396484, 'total_latency': 0.3949759876026827, 'total_tokens': 149, 'total_tokens_per_sec': 377.2381225105847}, 'model_name': 'Meta-Llama-3.1-70B-Instruct', 'system_fingerprint': 'fastcoe', 'created': 1731528070}, id='83208297-3eb9-4021-a856-ca78a15758df'),
|
||||
# 'parsed': AnswerWithJustification(answer='They are the same weight', justification='A pound is a unit of weight or mass, so a pound of bricks and a pound of feathers both weigh the same amount, one pound. The difference is in their density and volume. A pound of feathers would take up more space than a pound of bricks due to the difference in their densities.'),
|
||||
# 'parsing_error': None
|
||||
# }
|
||||
""" # noqa: E501
|
||||
if kwargs is not None:
|
||||
raise ValueError(f"Received unsupported arguments {kwargs}")
|
||||
is_pydantic_schema = _is_pydantic_class(schema)
|
||||
if method == "function_calling":
|
||||
if schema is None:
|
||||
raise ValueError(
|
||||
"`schema` must be specified when method is `function_calling`. "
|
||||
"Received None."
|
||||
)
|
||||
tool_name = convert_to_openai_tool(schema)["function"]["name"]
|
||||
llm = self.bind_tools([schema], tool_choice=tool_name)
|
||||
if is_pydantic_schema:
|
||||
output_parser: OutputParserLike[Any] = PydanticToolsParser(
|
||||
tools=[schema],
|
||||
first_tool_only=True,
|
||||
)
|
||||
else:
|
||||
output_parser = JsonOutputKeyToolsParser(
|
||||
key_name=tool_name, first_tool_only=True
|
||||
)
|
||||
elif method == "json_mode":
|
||||
llm = self
|
||||
# TODO bind response format when json mode available by API
|
||||
# llm = self.bind(response_format={"type": "json_object"})
|
||||
if is_pydantic_schema:
|
||||
schema = cast(Type[BaseModel], schema)
|
||||
output_parser = PydanticOutputParser(pydantic_object=schema)
|
||||
else:
|
||||
output_parser = JsonOutputParser()
|
||||
|
||||
elif method == "json_schema":
|
||||
if schema is None:
|
||||
raise ValueError(
|
||||
"`schema` must be specified when method is not `json_mode`. "
|
||||
"Received None."
|
||||
)
|
||||
llm = self
|
||||
# TODO bind response format when json schema available by API,
|
||||
# update example
|
||||
# llm = self.bind(
|
||||
# response_format={"type": "json_object", "json_schema": schema}
|
||||
# )
|
||||
if is_pydantic_schema:
|
||||
schema = cast(Type[BaseModel], schema)
|
||||
output_parser = PydanticOutputParser(pydantic_object=schema)
|
||||
else:
|
||||
output_parser = JsonOutputParser()
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unrecognized method argument. Expected one of `function_calling` or "
|
||||
f"`json_mode`. Received: `{method}`"
|
||||
)
|
||||
|
||||
if include_raw:
|
||||
parser_assign = RunnablePassthrough.assign(
|
||||
parsed=itemgetter("raw") | output_parser, parsing_error=lambda _: None
|
||||
)
|
||||
parser_none = RunnablePassthrough.assign(parsed=lambda _: None)
|
||||
parser_with_fallback = parser_assign.with_fallbacks(
|
||||
[parser_none], exception_key="parsing_error"
|
||||
)
|
||||
return RunnableMap(raw=llm) | parser_with_fallback
|
||||
else:
|
||||
return llm | output_parser
|
||||
|
||||
def _handle_request(
|
||||
self, messages_dicts: List[Dict], stop: Optional[List[str]] = None
|
||||
) -> Dict[str, Any]:
|
||||
self,
|
||||
messages_dicts: List[Dict[str, Any]],
|
||||
stop: Optional[List[str]] = None,
|
||||
streaming: bool = False,
|
||||
**kwargs: Any,
|
||||
) -> Response:
|
||||
"""
|
||||
Performs a post request to the LLM API.
|
||||
|
||||
Args:
|
||||
messages_dicts: List of role / content dicts to use as input.
|
||||
stop: list of stop tokens
|
||||
streaming: wether to do a streaming call
|
||||
|
||||
Returns:
|
||||
An iterator of response dicts.
|
||||
"""
|
||||
data = {
|
||||
"messages": messages_dicts,
|
||||
"max_tokens": self.max_tokens,
|
||||
"stop": stop,
|
||||
"model": self.model,
|
||||
"temperature": self.temperature,
|
||||
"top_p": self.top_p,
|
||||
"top_k": self.top_k,
|
||||
}
|
||||
if streaming:
|
||||
data = {
|
||||
"messages": messages_dicts,
|
||||
"max_tokens": self.max_tokens,
|
||||
"stop": stop,
|
||||
"model": self.model,
|
||||
"temperature": self.temperature,
|
||||
"top_p": self.top_p,
|
||||
"top_k": self.top_k,
|
||||
"stream": True,
|
||||
"stream_options": self.stream_options,
|
||||
**kwargs,
|
||||
}
|
||||
else:
|
||||
data = {
|
||||
"messages": messages_dicts,
|
||||
"max_tokens": self.max_tokens,
|
||||
"stop": stop,
|
||||
"model": self.model,
|
||||
"temperature": self.temperature,
|
||||
"top_p": self.top_p,
|
||||
"top_k": self.top_k,
|
||||
**kwargs,
|
||||
}
|
||||
http_session = requests.Session()
|
||||
response = http_session.post(
|
||||
self.sambanova_url,
|
||||
headers={
|
||||
"Authorization": f"Bearer {self.sambanova_api_key.get_secret_value()}",
|
||||
"Content-Type": "application/json",
|
||||
**self.additional_headers,
|
||||
},
|
||||
json=data,
|
||||
stream=streaming,
|
||||
)
|
||||
if response.status_code != 200:
|
||||
raise RuntimeError(
|
||||
@@ -267,27 +740,78 @@ class ChatSambaNovaCloud(BaseChatModel):
|
||||
f"{response.status_code}.",
|
||||
f"{response.text}.",
|
||||
)
|
||||
response_dict = response.json()
|
||||
if response_dict.get("error"):
|
||||
raise RuntimeError(
|
||||
f"Sambanova /complete call failed with status code "
|
||||
f"{response.status_code}.",
|
||||
f"{response_dict}.",
|
||||
)
|
||||
return response_dict
|
||||
return response
|
||||
|
||||
def _handle_streaming_request(
|
||||
self, messages_dicts: List[Dict], stop: Optional[List[str]] = None
|
||||
) -> Iterator[Dict]:
|
||||
def _process_response(self, response: Response) -> AIMessage:
|
||||
"""
|
||||
Performs an streaming post request to the LLM API.
|
||||
Process a non streaming response from the api
|
||||
|
||||
Args:
|
||||
messages_dicts: List of role / content dicts to use as input.
|
||||
stop: list of stop tokens
|
||||
response: A request Response object
|
||||
|
||||
Returns
|
||||
generation: an AIMessage with model generation
|
||||
"""
|
||||
try:
|
||||
response_dict = response.json()
|
||||
if response_dict.get("error"):
|
||||
raise RuntimeError(
|
||||
f"Sambanova /complete call failed with status code "
|
||||
f"{response.status_code}.",
|
||||
f"{response_dict}.",
|
||||
)
|
||||
except Exception as e:
|
||||
raise RuntimeError(
|
||||
f"Sambanova /complete call failed couldn't get JSON response {e}"
|
||||
f"response: {response.text}"
|
||||
)
|
||||
content = response_dict["choices"][0]["message"].get("content", "")
|
||||
if content is None:
|
||||
content = ""
|
||||
additional_kwargs: Dict[str, Any] = {}
|
||||
tool_calls = []
|
||||
invalid_tool_calls = []
|
||||
raw_tool_calls = response_dict["choices"][0]["message"].get("tool_calls")
|
||||
if raw_tool_calls:
|
||||
additional_kwargs["tool_calls"] = raw_tool_calls
|
||||
for raw_tool_call in raw_tool_calls:
|
||||
if isinstance(raw_tool_call["function"]["arguments"], dict):
|
||||
raw_tool_call["function"]["arguments"] = json.dumps(
|
||||
raw_tool_call["function"].get("arguments", {})
|
||||
)
|
||||
try:
|
||||
tool_calls.append(parse_tool_call(raw_tool_call, return_id=True))
|
||||
except Exception as e:
|
||||
invalid_tool_calls.append(
|
||||
make_invalid_tool_call(raw_tool_call, str(e))
|
||||
)
|
||||
message = AIMessage(
|
||||
content=content,
|
||||
additional_kwargs=additional_kwargs,
|
||||
tool_calls=tool_calls,
|
||||
invalid_tool_calls=invalid_tool_calls,
|
||||
response_metadata={
|
||||
"finish_reason": response_dict["choices"][0]["finish_reason"],
|
||||
"usage": response_dict.get("usage"),
|
||||
"model_name": response_dict["model"],
|
||||
"system_fingerprint": response_dict["system_fingerprint"],
|
||||
"created": response_dict["created"],
|
||||
},
|
||||
id=response_dict["id"],
|
||||
)
|
||||
return message
|
||||
|
||||
def _process_stream_response(
|
||||
self, response: Response
|
||||
) -> Iterator[BaseMessageChunk]:
|
||||
"""
|
||||
Process a streaming response from the api
|
||||
|
||||
Args:
|
||||
response: An iterable request Response object
|
||||
|
||||
Yields:
|
||||
An iterator of response dicts.
|
||||
generation: an AIMessageChunk with model partial generation
|
||||
"""
|
||||
try:
|
||||
import sseclient
|
||||
@@ -296,37 +820,9 @@ class ChatSambaNovaCloud(BaseChatModel):
|
||||
"could not import sseclient library"
|
||||
"Please install it with `pip install sseclient-py`."
|
||||
)
|
||||
data = {
|
||||
"messages": messages_dicts,
|
||||
"max_tokens": self.max_tokens,
|
||||
"stop": stop,
|
||||
"model": self.model,
|
||||
"temperature": self.temperature,
|
||||
"top_p": self.top_p,
|
||||
"top_k": self.top_k,
|
||||
"stream": True,
|
||||
"stream_options": self.stream_options,
|
||||
}
|
||||
http_session = requests.Session()
|
||||
response = http_session.post(
|
||||
self.sambanova_url,
|
||||
headers={
|
||||
"Authorization": f"Bearer {self.sambanova_api_key.get_secret_value()}",
|
||||
"Content-Type": "application/json",
|
||||
},
|
||||
json=data,
|
||||
stream=True,
|
||||
)
|
||||
|
||||
client = sseclient.SSEClient(response)
|
||||
|
||||
if response.status_code != 200:
|
||||
raise RuntimeError(
|
||||
f"Sambanova /complete call failed with status code "
|
||||
f"{response.status_code}."
|
||||
f"{response.text}."
|
||||
)
|
||||
|
||||
for event in client.events():
|
||||
if event.event == "error_event":
|
||||
raise RuntimeError(
|
||||
@@ -353,7 +849,31 @@ class ChatSambaNovaCloud(BaseChatModel):
|
||||
f"{response.status_code}."
|
||||
f"{event.data}."
|
||||
)
|
||||
yield data
|
||||
if len(data["choices"]) > 0:
|
||||
finish_reason = data["choices"][0].get("finish_reason")
|
||||
content = data["choices"][0]["delta"]["content"]
|
||||
id = data["id"]
|
||||
chunk = AIMessageChunk(
|
||||
content=content, id=id, additional_kwargs={}
|
||||
)
|
||||
else:
|
||||
content = ""
|
||||
id = data["id"]
|
||||
metadata = {
|
||||
"finish_reason": finish_reason,
|
||||
"usage": data.get("usage"),
|
||||
"model_name": data["model"],
|
||||
"system_fingerprint": data["system_fingerprint"],
|
||||
"created": data["created"],
|
||||
}
|
||||
chunk = AIMessageChunk(
|
||||
content=content,
|
||||
id=id,
|
||||
response_metadata=metadata,
|
||||
additional_kwargs={},
|
||||
)
|
||||
yield chunk
|
||||
|
||||
except Exception as e:
|
||||
raise RuntimeError(
|
||||
f"Error getting content chunk raw streamed response: {e}"
|
||||
@@ -390,21 +910,14 @@ class ChatSambaNovaCloud(BaseChatModel):
|
||||
if stream_iter:
|
||||
return generate_from_stream(stream_iter)
|
||||
messages_dicts = _create_message_dicts(messages)
|
||||
response = self._handle_request(messages_dicts, stop)
|
||||
message = AIMessage(
|
||||
content=response["choices"][0]["message"]["content"],
|
||||
additional_kwargs={},
|
||||
response_metadata={
|
||||
"finish_reason": response["choices"][0]["finish_reason"],
|
||||
"usage": response.get("usage"),
|
||||
"model_name": response["model"],
|
||||
"system_fingerprint": response["system_fingerprint"],
|
||||
"created": response["created"],
|
||||
response = self._handle_request(messages_dicts, stop, streaming=False, **kwargs)
|
||||
message = self._process_response(response)
|
||||
generation = ChatGeneration(
|
||||
message=message,
|
||||
generation_info={
|
||||
"finish_reason": message.response_metadata["finish_reason"]
|
||||
},
|
||||
id=response["id"],
|
||||
)
|
||||
|
||||
generation = ChatGeneration(message=message)
|
||||
return ChatResult(generations=[generation])
|
||||
|
||||
def _stream(
|
||||
@@ -431,34 +944,9 @@ class ChatSambaNovaCloud(BaseChatModel):
|
||||
chunk: ChatGenerationChunk with model partial generation
|
||||
"""
|
||||
messages_dicts = _create_message_dicts(messages)
|
||||
finish_reason = None
|
||||
for partial_response in self._handle_streaming_request(messages_dicts, stop):
|
||||
if len(partial_response["choices"]) > 0:
|
||||
finish_reason = partial_response["choices"][0].get("finish_reason")
|
||||
content = partial_response["choices"][0]["delta"]["content"]
|
||||
id = partial_response["id"]
|
||||
chunk = ChatGenerationChunk(
|
||||
message=AIMessageChunk(content=content, id=id, additional_kwargs={})
|
||||
)
|
||||
else:
|
||||
content = ""
|
||||
id = partial_response["id"]
|
||||
metadata = {
|
||||
"finish_reason": finish_reason,
|
||||
"usage": partial_response.get("usage"),
|
||||
"model_name": partial_response["model"],
|
||||
"system_fingerprint": partial_response["system_fingerprint"],
|
||||
"created": partial_response["created"],
|
||||
}
|
||||
chunk = ChatGenerationChunk(
|
||||
message=AIMessageChunk(
|
||||
content=content,
|
||||
id=id,
|
||||
response_metadata=metadata,
|
||||
additional_kwargs={},
|
||||
)
|
||||
)
|
||||
|
||||
response = self._handle_request(messages_dicts, stop, streaming=True, **kwargs)
|
||||
for ai_message_chunk in self._process_stream_response(response):
|
||||
chunk = ChatGenerationChunk(message=ai_message_chunk)
|
||||
if run_manager:
|
||||
run_manager.on_llm_new_token(chunk.text, chunk=chunk)
|
||||
yield chunk
|
||||
@@ -617,10 +1105,10 @@ class ChatSambaStudio(BaseChatModel):
|
||||
process_prompt: Optional[bool] = Field(default=True)
|
||||
"""whether process prompt (for CoE generic v1 and v2 endpoints)"""
|
||||
|
||||
stream_options: dict = Field(default={"include_usage": True})
|
||||
stream_options: Dict[str, Any] = Field(default={"include_usage": True})
|
||||
"""stream options, include usage to get generation metrics"""
|
||||
|
||||
special_tokens: dict = Field(
|
||||
special_tokens: Dict[str, Any] = Field(
|
||||
default={
|
||||
"start": "<|begin_of_text|>",
|
||||
"start_role": "<|begin_of_text|><|start_header_id|>{role}<|end_header_id|>",
|
||||
|
Reference in New Issue
Block a user