Force List[Tuple[str,str]] to chat history widget (#12530)

Co-authored-by: Bagatur <baskaryan@gmail.com>
This commit is contained in:
David Duong 2023-10-30 23:19:32 +01:00 committed by GitHub
parent d39b4b61b6
commit b5c17ff188
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 6 additions and 6 deletions

View File

@ -5,7 +5,7 @@ from langchain.agents.format_scratchpad import format_to_openai_functions
from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser
from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain.pydantic_v1 import BaseModel
from langchain.pydantic_v1 import BaseModel, Field
from langchain.schema.messages import AIMessage, HumanMessage
from langchain.tools.render import format_tool_to_openai_function
from langchain.tools.tavily_search import TavilySearchResults
@ -57,7 +57,7 @@ agent = (
class AgentInput(BaseModel):
input: str
chat_history: List[Tuple[str, str]]
chat_history: List[Tuple[str, str]] = Field(..., extra={"widget": {"type": "chat"}})
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True).with_types(

View File

@ -15,7 +15,7 @@ from langchain.schema.runnable import (
RunnablePassthrough,
)
from langchain.vectorstores import Pinecone
from pydantic import BaseModel
from pydantic import BaseModel, Field
if os.environ.get("PINECONE_API_KEY", None) is None:
raise Exception("Missing `PINECONE_API_KEY` environment variable.")
@ -87,7 +87,7 @@ def _format_chat_history(chat_history: List[Tuple[str, str]]) -> List:
# User input
class ChatHistory(BaseModel):
chat_history: List[Tuple[str, str]]
chat_history: List[Tuple[str, str]] = Field(..., extra={"widget": {"type": "chat"}})
question: str

View File

@ -3,7 +3,7 @@ from typing import List, Tuple
from langchain.agents import AgentExecutor
from langchain.agents.format_scratchpad import format_xml
from langchain.chat_models import ChatAnthropic
from langchain.pydantic_v1 import BaseModel
from langchain.pydantic_v1 import BaseModel, Field
from langchain.schema import AIMessage, HumanMessage
from langchain.tools import DuckDuckGoSearchRun
from langchain.tools.render import render_text_description
@ -44,7 +44,7 @@ agent = (
class AgentInput(BaseModel):
question: str
chat_history: List[Tuple[str, str]]
chat_history: List[Tuple[str, str]] = Field(..., extra={"widget": {"type": "chat"}})
agent_executor = AgentExecutor(